We show that the characterization of existence and uniqueness up to vertical translations of solutions to the prescribed mean curvature equation, originally proved by Giusti in the smooth case, holds true for domains satisfying very mild regularity assumptions. Our results apply in particular to the non-parametric solutions of the capillary problem for perfectly wetting fluids in zero gravity. Among the essential tools used in the proofs, we mention a generalized Gauss–Green theorem based on the construction of the weak normal trace of a vector field with bounded divergence, in the spirit of classical results due to Anzellotti, and a weak Young’s law for (Λ,r0)-minimizers of the perimeter.
The prescribed mean curvature equation in weakly regular domains / Leonardi, Gian Paolo; Saracco, Giorgio. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 25:9(2018), pp. 1-29.
Data di pubblicazione: | 2018 |
Data di prima pubblicazione: | 23-feb-2018 |
Titolo: | The prescribed mean curvature equation in weakly regular domains |
Autore/i: | Leonardi, Gian Paolo; Saracco, Giorgio |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s00030-018-0500-3 |
Rivista: | |
Volume: | 25 |
Fascicolo: | 9 |
Pagina iniziale: | 1 |
Pagina finale: | 29 |
Codice identificativo ISI: | WOS:000430329700002 |
Codice identificativo Scopus: | 2-s2.0-85042488437 |
Citazione: | The prescribed mean curvature equation in weakly regular domains / Leonardi, Gian Paolo; Saracco, Giorgio. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 25:9(2018), pp. 1-29. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
LeoSar_PMC_final.pdf | articolo principale | Post-print dell'autore (bozza post referaggio) | Open Access Visualizza/Apri |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris