The cyclisation of a short chain into a ring provides fascinating scenarios in terms of transforming a finite array of spins into a quasiinfinite structure. If frustration is present, theory predicts interesting quantum critical points, where the ground state and thus lowtemperature properties of a material change drastically upon even a small variation of appropriate external parameters. This can be visualised as achieving a very high and pointed summit where the way down has an infinity of possibilities, which by any parameter change will be rapidly chosen, in order to reach the final ground state. Here we report a mixed 3d/4f cyclic coordination cluster that turns out to be very near or even at such a quantum critical point. It has a ground state spin of S = 60, the largest ever observed for a molecule (120 times that of a single electron). [Fe10Gd10(Me-tea)10(Me-teaH)10(NO3)10]·20MeCN forms a nano-torus with alternating gadolinium and iron ions with a nearest neighbour Fe–Gd coupling and a frustrating next-nearest neighbour Fe–Fe coupling. Such a spin arrangement corresponds to a cyclic delta or saw-tooth chain, which can exhibit unusual frustration effects. In the present case, the quantum critical point bears a ‘flatland’ of tens of thousands of energetically degenerate states between which transitions are possible at no energy costs with profound caloric consequences. Entropy-wise the energy flatland translates into the pointed summit overlooking the entropy landscape. Going downhill several target states can be reached depending on the applied physical procedure which offers new prospects for addressability.
High spin cycles: topping the spin record for a single molecule verging on quantum criticality / Baniodeh, Amer; Magnani, Nicola; Lan, Yanhua; Buth, Gernot; Anson, Christopher E.; Richter, Johannes; Affronte, Marco; Schnack, Jürgen; Powell, Annie K.. - In: NPJ QUANTUM MATERIALS. - ISSN 2397-4648. - 3:1(2018), pp. 10-14. [10.1038/s41535-018-0082-7]
High spin cycles: topping the spin record for a single molecule verging on quantum criticality
Affronte, Marco
;
2018
Abstract
The cyclisation of a short chain into a ring provides fascinating scenarios in terms of transforming a finite array of spins into a quasiinfinite structure. If frustration is present, theory predicts interesting quantum critical points, where the ground state and thus lowtemperature properties of a material change drastically upon even a small variation of appropriate external parameters. This can be visualised as achieving a very high and pointed summit where the way down has an infinity of possibilities, which by any parameter change will be rapidly chosen, in order to reach the final ground state. Here we report a mixed 3d/4f cyclic coordination cluster that turns out to be very near or even at such a quantum critical point. It has a ground state spin of S = 60, the largest ever observed for a molecule (120 times that of a single electron). [Fe10Gd10(Me-tea)10(Me-teaH)10(NO3)10]·20MeCN forms a nano-torus with alternating gadolinium and iron ions with a nearest neighbour Fe–Gd coupling and a frustrating next-nearest neighbour Fe–Fe coupling. Such a spin arrangement corresponds to a cyclic delta or saw-tooth chain, which can exhibit unusual frustration effects. In the present case, the quantum critical point bears a ‘flatland’ of tens of thousands of energetically degenerate states between which transitions are possible at no energy costs with profound caloric consequences. Entropy-wise the energy flatland translates into the pointed summit overlooking the entropy landscape. Going downhill several target states can be reached depending on the applied physical procedure which offers new prospects for addressability.File | Dimensione | Formato | |
---|---|---|---|
41535_2018_82_Author.pdf
Open access
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri |
VOR_High spin cycles.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris