Peptide aggregation into oligomers and fibrillar architectures is a hallmark of severe neurodegenerative pathologies, diabetes mellitus or systemic amyloidoses. The polymorphism of amyloid forms and their distribution are both effectors that potentially modulate the disease, thus it is important to understand the molecular basis of protein amyloid disorders through the interaction of the different amyloid forms with neural cells and tissues. Here we explore the effect of amyloid fibrils on the human neuroblastoma (SH-SY5Y) cell line in vitro. We control the kinetic of fibrillization of insulin at low pH and higher temperature. We use a multiscale characterization via fluorescence microscopy and multimodal scanning probe microscopy to correlate the number of cells and their morphology, with the finer details of the insulin deposits. Our results show that insulin aggregates deposited on neuroblastoma cell cultures lead to a progressive modification and decreased number of cells that correlates with the degree of fibrillization. SPM unravels that the aggregates strongly interact with the cell membrane, forming a stiff encase that possibly leads to an increased cell membrane stiffness and deficit in the metabolic exchanges between the cells and their environment. The presence of fibrils does not affect the number of cells at 24 h whereas drop down to 60% is observed after 48 h of incubation.

Insulin amyloid structures and their influence on neural cells / Bystrenova, Eva; Bednarikova, Zuzana; Barbalinardo, Marianna; Valle, Francesco; Gazova, Zuzana; Biscarini, Fabio. - In: COLLOIDS AND SURFACES. B, BIOINTERFACES. - ISSN 0927-7765. - 161:(2018), pp. 177-182. [10.1016/j.colsurfb.2017.10.054]

Insulin amyloid structures and their influence on neural cells

Fabio Biscarini
2018

Abstract

Peptide aggregation into oligomers and fibrillar architectures is a hallmark of severe neurodegenerative pathologies, diabetes mellitus or systemic amyloidoses. The polymorphism of amyloid forms and their distribution are both effectors that potentially modulate the disease, thus it is important to understand the molecular basis of protein amyloid disorders through the interaction of the different amyloid forms with neural cells and tissues. Here we explore the effect of amyloid fibrils on the human neuroblastoma (SH-SY5Y) cell line in vitro. We control the kinetic of fibrillization of insulin at low pH and higher temperature. We use a multiscale characterization via fluorescence microscopy and multimodal scanning probe microscopy to correlate the number of cells and their morphology, with the finer details of the insulin deposits. Our results show that insulin aggregates deposited on neuroblastoma cell cultures lead to a progressive modification and decreased number of cells that correlates with the degree of fibrillization. SPM unravels that the aggregates strongly interact with the cell membrane, forming a stiff encase that possibly leads to an increased cell membrane stiffness and deficit in the metabolic exchanges between the cells and their environment. The presence of fibrils does not affect the number of cells at 24 h whereas drop down to 60% is observed after 48 h of incubation.
2018
18-ott-2017
161
177
182
Insulin amyloid structures and their influence on neural cells / Bystrenova, Eva; Bednarikova, Zuzana; Barbalinardo, Marianna; Valle, Francesco; Gazova, Zuzana; Biscarini, Fabio. - In: COLLOIDS AND SURFACES. B, BIOINTERFACES. - ISSN 0927-7765. - 161:(2018), pp. 177-182. [10.1016/j.colsurfb.2017.10.054]
Bystrenova, Eva; Bednarikova, Zuzana; Barbalinardo, Marianna; Valle, Francesco; Gazova, Zuzana; Biscarini, Fabio
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S092777651730704X-main.pdf

Solo gestori archivio

Descrizione: articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1154254
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact