Statins are widely used hypocholesterolemic drugs that inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, a rate-limiting enzyme of the mevalonate pathway whose biosynthetic endproduct is cholesterol. As a result of this activity, statins may perturb the composition of cell membranes, resulting in lipid raft disruption. Furthermore, by inhibiting protein prenylation, a process also dependent on mevalonate, statins block membrane targeting and activity of small GTPases. Antigen uptake, processing and presentation involve the interplay of Rab and Rho family GTPases. Furthermore, lipid rafts have been implicated both in antigen internalization by the BCR and in MHC class II clustering at the immunological synapse. Here we have addressed the effects of simvastatin on antigen processing and presentation by human B cells and dendritic cells. The results show that simvastatin potently suppresses tetanus toxoid processing and presentation to CD4+ T cells by HLA-DR by inhibiting protein antigen uptake through both receptor-mediated endocytosis and macropinocytosis. This effect can be largely accounted for by defective prenylation of Rho and Rab GTPases in the absence of any measurable perturbation of lipid rafts. In addition, simvastatin was found to preferentially affect the invariant chain-dependent MHC class II pathway, thereby identifying this route of antigen processing and presentation as a selective target of statins. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simvastatin inhibits the MHC class II pathway of antigen presentation by impairing Ras superfamily GTPases / Ghittoni, Raffaela; Napolitani, Giorgio; Benati, Daniela; Uliveri, Cristina; Patrussi, Laura; Laghi Pasini, Franco; Lanzavecchia, Antonio; Baldari, Cosima T.. - In: EUROPEAN JOURNAL OF IMMUNOLOGY. - ISSN 0014-2980. - 36:11(2006), pp. 2885-2893. [10.1002/eji.200636567]
Simvastatin inhibits the MHC class II pathway of antigen presentation by impairing Ras superfamily GTPases
Benati, Daniela;
2006
Abstract
Statins are widely used hypocholesterolemic drugs that inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, a rate-limiting enzyme of the mevalonate pathway whose biosynthetic endproduct is cholesterol. As a result of this activity, statins may perturb the composition of cell membranes, resulting in lipid raft disruption. Furthermore, by inhibiting protein prenylation, a process also dependent on mevalonate, statins block membrane targeting and activity of small GTPases. Antigen uptake, processing and presentation involve the interplay of Rab and Rho family GTPases. Furthermore, lipid rafts have been implicated both in antigen internalization by the BCR and in MHC class II clustering at the immunological synapse. Here we have addressed the effects of simvastatin on antigen processing and presentation by human B cells and dendritic cells. The results show that simvastatin potently suppresses tetanus toxoid processing and presentation to CD4+ T cells by HLA-DR by inhibiting protein antigen uptake through both receptor-mediated endocytosis and macropinocytosis. This effect can be largely accounted for by defective prenylation of Rho and Rab GTPases in the absence of any measurable perturbation of lipid rafts. In addition, simvastatin was found to preferentially affect the invariant chain-dependent MHC class II pathway, thereby identifying this route of antigen processing and presentation as a selective target of statins. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.File | Dimensione | Formato | |
---|---|---|---|
Ghittoni_et_al-2006-European_Journal_of_Immunology.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
259.22 kB
Formato
Adobe PDF
|
259.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris