The present study was aimed to analyze the effect of loading cycles on the behaviour of the AISI H11 tool steel commonly used for aluminium extrusion dies working at high temperatures and under high, cyclic stresses. A technological test method in which the specimen geometry resembled the mandrel of a hollow extrusion die was developed. Finite element analyses were performed to aid in determining specimen geometry and dimensions as well as the levels of stress to be applied to the specimen so as to replicate the conditions typically encountered by industrial hollow extrusion dies. Tests were performed on a Gleeble thermomechanical simulator by heating the specimen using Joule’s effect and by applying loading for up to 6.30 h or till specimen failure. Displacements during the tests at 380, 490, 540 and 580 ◦C and under the average stresses of 400, 600 and 800MPa were determined. The specimens were tested under creep (with the load held at a fixed value), fatigue (cyclic loading) and creep–fatigue (cyclic loading with a 3 min dwell-time) loading, thereby allowing a direct comparison between different deforming mechanisms. The results showed that the test could physically simulate the cyclic loading on the hollow die during aluminium extrusion and that the creep condition represented the most severe working condition. In addition, the tests could reveal the interaction between creep and fatigue mechanisms.

The role of creep and fatigue in determining the high-temperature behaviour of AISI H11 tempered steel for aluminium extrusion dies / Reggiani, Barbara; Donati, Lorenzo; Zhiu, Jie; Tomesani, Luca. - In: JOURNAL OF MATERIALS PROCESSING TECHNOLOGY. - ISSN 0924-0136. - Volume 210, Issue 12:(2010), pp. 1613-1623. [10.1016/j.jmatprotec.2010.05.009]

The role of creep and fatigue in determining the high-temperature behaviour of AISI H11 tempered steel for aluminium extrusion dies

Reggiani Barbara
;
2010

Abstract

The present study was aimed to analyze the effect of loading cycles on the behaviour of the AISI H11 tool steel commonly used for aluminium extrusion dies working at high temperatures and under high, cyclic stresses. A technological test method in which the specimen geometry resembled the mandrel of a hollow extrusion die was developed. Finite element analyses were performed to aid in determining specimen geometry and dimensions as well as the levels of stress to be applied to the specimen so as to replicate the conditions typically encountered by industrial hollow extrusion dies. Tests were performed on a Gleeble thermomechanical simulator by heating the specimen using Joule’s effect and by applying loading for up to 6.30 h or till specimen failure. Displacements during the tests at 380, 490, 540 and 580 ◦C and under the average stresses of 400, 600 and 800MPa were determined. The specimens were tested under creep (with the load held at a fixed value), fatigue (cyclic loading) and creep–fatigue (cyclic loading with a 3 min dwell-time) loading, thereby allowing a direct comparison between different deforming mechanisms. The results showed that the test could physically simulate the cyclic loading on the hollow die during aluminium extrusion and that the creep condition represented the most severe working condition. In addition, the tests could reveal the interaction between creep and fatigue mechanisms.
2010
Volume 210, Issue 12
1613
1623
The role of creep and fatigue in determining the high-temperature behaviour of AISI H11 tempered steel for aluminium extrusion dies / Reggiani, Barbara; Donati, Lorenzo; Zhiu, Jie; Tomesani, Luca. - In: JOURNAL OF MATERIALS PROCESSING TECHNOLOGY. - ISSN 0924-0136. - Volume 210, Issue 12:(2010), pp. 1613-1623. [10.1016/j.jmatprotec.2010.05.009]
Reggiani, Barbara; Donati, Lorenzo; Zhiu, Jie; Tomesani, Luca
File in questo prodotto:
File Dimensione Formato  
JMPT_creep_fatigue.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 684.38 kB
Formato Adobe PDF
684.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1153244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact