Phosphodiesterases (PDEs) regulate the intracellular levels of cAMP and cGMP. The great clinical success of the PDE5 inhibitors, Sildenafil (Viagra), Vardenafil (Levitra) and Tadalafil (Cialis) has led to an increasing interest for this class of enzymes. Recent studies have shown a correlation between tumor growth and PDE5 overexpression, making PDE5-selective inhibitors promising candidates for cancer treatment. The search for such inhibitors rests today on radioactive assays. In this work, we exploit the conserved catalytic domain of the enzyme and propose a faster and safer method for detecting the binding of ligands and evaluate their affinities. The new approach takes advantage of Förster Resonance Energy Transfer (FRET) between, as the donor, a fluorescein-like diarsenical probe able to covalently bind a tetracysteine motif fused to the recombinant PDE5 catalytic domain and, as the acceptor, a rhodamine probe covalently bound to the pseudosubstrate cGMPS. The FRET efficiency decreases when a competitive ligand binds the PDE5 catalytic site and displaces the cGMPS-rhodamine conjugate. We have structurally investigated the PDE5/cGMPS-rhodamine complex by molecular modelling and have used the FRET signal to quantitatively characterize its binding equilibrium. Competitive displacement experiments were carried out with tadalafil and cGMPS. An adaptation of the competitive-displacement equilibrium model yielded the affinities for PDE5 of the incoming ligands, nano- and micromolar, respectively.

Fluorometric detection of protein-ligand engagement: The case of phosphodiesterase5 / Di Rocco, Giulia; Martinelli, Ilaria; Pacifico, Salvatore; Guerrini, Remo; Cichero, Elena; Fossa, Paola; Franchini, Silvia; Cardarelli, Silvia; Giorgi, Mauro; Sola, Marco; Ponterini, Glauco. - In: JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS. - ISSN 0731-7085. - 149:(2018), pp. 335-342. [10.1016/j.jpba.2017.11.014]

Fluorometric detection of protein-ligand engagement: The case of phosphodiesterase5

Di Rocco, Giulia;Martinelli, Ilaria;Pacifico, Salvatore;Guerrini, Remo;Franchini, Silvia;Sola, Marco;Ponterini, Glauco
2018

Abstract

Phosphodiesterases (PDEs) regulate the intracellular levels of cAMP and cGMP. The great clinical success of the PDE5 inhibitors, Sildenafil (Viagra), Vardenafil (Levitra) and Tadalafil (Cialis) has led to an increasing interest for this class of enzymes. Recent studies have shown a correlation between tumor growth and PDE5 overexpression, making PDE5-selective inhibitors promising candidates for cancer treatment. The search for such inhibitors rests today on radioactive assays. In this work, we exploit the conserved catalytic domain of the enzyme and propose a faster and safer method for detecting the binding of ligands and evaluate their affinities. The new approach takes advantage of Förster Resonance Energy Transfer (FRET) between, as the donor, a fluorescein-like diarsenical probe able to covalently bind a tetracysteine motif fused to the recombinant PDE5 catalytic domain and, as the acceptor, a rhodamine probe covalently bound to the pseudosubstrate cGMPS. The FRET efficiency decreases when a competitive ligand binds the PDE5 catalytic site and displaces the cGMPS-rhodamine conjugate. We have structurally investigated the PDE5/cGMPS-rhodamine complex by molecular modelling and have used the FRET signal to quantitatively characterize its binding equilibrium. Competitive displacement experiments were carried out with tadalafil and cGMPS. An adaptation of the competitive-displacement equilibrium model yielded the affinities for PDE5 of the incoming ligands, nano- and micromolar, respectively.
2018
11-nov-2017
149
335
342
Fluorometric detection of protein-ligand engagement: The case of phosphodiesterase5 / Di Rocco, Giulia; Martinelli, Ilaria; Pacifico, Salvatore; Guerrini, Remo; Cichero, Elena; Fossa, Paola; Franchini, Silvia; Cardarelli, Silvia; Giorgi, Mauro; Sola, Marco; Ponterini, Glauco. - In: JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS. - ISSN 0731-7085. - 149:(2018), pp. 335-342. [10.1016/j.jpba.2017.11.014]
Di Rocco, Giulia; Martinelli, Ilaria; Pacifico, Salvatore; Guerrini, Remo; Cichero, Elena; Fossa, Paola; Franchini, Silvia; Cardarelli, Silvia; Giorgi...espandi
File in questo prodotto:
File Dimensione Formato  
Di Rocco JPBA 2018.pdf

Open access

Descrizione: Articolo principale
Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1153078
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact