In order to investigate the effectiveness of multivariate image analysis for the evaluation of maize defects, RGB images of maize samples containing different percentages of defective kernels were acquired and then converted into colourgrams, i.e., signals codifying colour-related features. Multivariate analysis of the colourgrams matrix showed a distribution of the acquired samples according to the amount of defective kernels.

Preliminary analysis of RGB images for the identification of defective maize kernels / Orlandi, Giorgia; Calvini, Rosalba; Foca, Giorgia; Ulrici, Alessandro. - (2016), pp. 257-261. (Intervento presentato al convegno 2nd IMEKOFOODS Conference: Promoting Objective and Measurable Food Quality and Safety 2016 tenutosi a Benevento, Italy nel 2-5 ottobre 2016).

Preliminary analysis of RGB images for the identification of defective maize kernels

Giorgia Orlandi;Rosalba Calvini;Giorgia Foca;Alessandro Ulrici
2016

Abstract

In order to investigate the effectiveness of multivariate image analysis for the evaluation of maize defects, RGB images of maize samples containing different percentages of defective kernels were acquired and then converted into colourgrams, i.e., signals codifying colour-related features. Multivariate analysis of the colourgrams matrix showed a distribution of the acquired samples according to the amount of defective kernels.
2016
2nd IMEKOFOODS Conference: Promoting Objective and Measurable Food Quality and Safety 2016
Benevento, Italy
2-5 ottobre 2016
257
261
Orlandi, Giorgia; Calvini, Rosalba; Foca, Giorgia; Ulrici, Alessandro
Preliminary analysis of RGB images for the identification of defective maize kernels / Orlandi, Giorgia; Calvini, Rosalba; Foca, Giorgia; Ulrici, Alessandro. - (2016), pp. 257-261. (Intervento presentato al convegno 2nd IMEKOFOODS Conference: Promoting Objective and Measurable Food Quality and Safety 2016 tenutosi a Benevento, Italy nel 2-5 ottobre 2016).
File in questo prodotto:
File Dimensione Formato  
Orlandi_Paper621_IMEKOFOODS.pdf

Accesso riservato

Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 844.4 kB
Formato Adobe PDF
844.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1152439
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact