Nonwoven fibrous mats based on semicrystalline networks are prepared starting from poly(ε-caprolactone) and properly combining electrospinning and sol–gel reactions. The mats are obtained as continuous, randomly oriented micrometric fibers with different network densities. The systems are subjected to thermomechanical cycles to investigate their one-way and two-way shape memory behavior. One-way tests aim at exploring the effects of the deformation temperature on the materials response, with particular interest to the less investigated cold-working conditions (i.e., deformation temperature below Tm). The materials display two-way shape memory capabilities (i.e., the ability to change between two distinguished shapes upon heating and cooling under a fixed nonzero stress) and the effect of the applied stress is explored. The shape memory characterization is accompanied by an ex situ SEM analysis, to describe the concurrent microstructural evolution during the macroscopic shape variation, and by the assessment of their biocompatibility, to explore the suitability of the nonwovens for biomedical applications. (Figure presented.).

Mutifunctional Electrospun Nonwoven Mats with Two-Way Shape Memory Behavior Prepared from Sol-Gel Crosslinked Poly(epsilon-Caprolactone) / Pandini, Stefano; Agnelli, Silvia; Merlettini, Andrea; Chiellini, Federica; Gualandi, Chiara; Paderni, Katia; Focarete, Maria Letizia; Messori, Massimo; Toselli, Maurizio. - In: MACROMOLECULAR MATERIALS AND ENGINEERING. - ISSN 1438-7492. - 302:8(2017), pp. 1-19. [10.1002/mame.201600519]

Mutifunctional Electrospun Nonwoven Mats with Two-Way Shape Memory Behavior Prepared from Sol-Gel Crosslinked Poly(epsilon-Caprolactone)

Paderni, Katia;Messori, Massimo;
2017

Abstract

Nonwoven fibrous mats based on semicrystalline networks are prepared starting from poly(ε-caprolactone) and properly combining electrospinning and sol–gel reactions. The mats are obtained as continuous, randomly oriented micrometric fibers with different network densities. The systems are subjected to thermomechanical cycles to investigate their one-way and two-way shape memory behavior. One-way tests aim at exploring the effects of the deformation temperature on the materials response, with particular interest to the less investigated cold-working conditions (i.e., deformation temperature below Tm). The materials display two-way shape memory capabilities (i.e., the ability to change between two distinguished shapes upon heating and cooling under a fixed nonzero stress) and the effect of the applied stress is explored. The shape memory characterization is accompanied by an ex situ SEM analysis, to describe the concurrent microstructural evolution during the macroscopic shape variation, and by the assessment of their biocompatibility, to explore the suitability of the nonwovens for biomedical applications. (Figure presented.).
302
8
1
19
Mutifunctional Electrospun Nonwoven Mats with Two-Way Shape Memory Behavior Prepared from Sol-Gel Crosslinked Poly(epsilon-Caprolactone) / Pandini, Stefano; Agnelli, Silvia; Merlettini, Andrea; Chiellini, Federica; Gualandi, Chiara; Paderni, Katia; Focarete, Maria Letizia; Messori, Massimo; Toselli, Maurizio. - In: MACROMOLECULAR MATERIALS AND ENGINEERING. - ISSN 1438-7492. - 302:8(2017), pp. 1-19. [10.1002/mame.201600519]
Pandini, Stefano; Agnelli, Silvia; Merlettini, Andrea; Chiellini, Federica; Gualandi, Chiara; Paderni, Katia; Focarete, Maria Letizia; Messori, Massimo; Toselli, Maurizio
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1151007
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact