This paper is devoted to show duality in the estimation of Markov Switching (MS) GARCH processes. It is well-known that MS GARCH models suffer of path dependence which makes the estimation step unfeasible with usual Maximum Likelihood procedure. However, by rewriting the model in a suitable state space representation, we are able to give a unique framework to reconcile the estimation obtained by filtering procedure with that coming from some auxiliary models proposed in the literature. Estimation on short-term interest rates shows the feasibility of the proposed approach.
Markov Switching GARCH Models: Filtering, Approximations and Duality / Billio, Monica; Cavicchioli, Maddalena. - (2017), pp. 59-72.
Data di pubblicazione: | 2017 |
Titolo: | Markov Switching GARCH Models: Filtering, Approximations and Duality |
Autore/i: | Billio, Monica; Cavicchioli, Maddalena |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/978-3-319-50234-2_5 |
Titolo del libro: | Mathematical and Statistical Methods for Actuarial Sciences and Finance |
A cura di: | Corazza, M., Legros, F., Perna, C., Sibillo, M. |
ISBN: | 978-3-319-50234-2 |
Editore: | Springer |
Nazione editore: | SVIZZERA |
Citazione: | Markov Switching GARCH Models: Filtering, Approximations and Duality / Billio, Monica; Cavicchioli, Maddalena. - (2017), pp. 59-72. |
Tipologia | Capitolo/Saggio |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris