Concerning the Laplace operator with homogeneous Dirichlet boundary conditions, the classical notion of isospectrality assumes that two domains are related when they give rise to the same spectrum. In two dimensions, non isometric, isospectral domains exist. It is not known however if all the eigenvalues relative to a specific domain can be preserved under suitable continuous deformation of its geometry. We show that this is possible when the 2D Laplacian is replaced by a finite dimensional version and the geometry is modified by respecting certain constraints. The analysis is carried out in a very small finite dimensional space, but it can be extended to more accurate finite-dimensional representations of the 2D Laplacian, with an increase of computational complexity. The aim of this paper is to introduce the preliminary steps in view of more serious generalizations.
Isospectral Domains for Discrete Elliptic Operators / Fatone, Lorella; Funaro, Daniele. - In: JOURNAL OF SCIENTIFIC COMPUTING. - ISSN 0885-7474. - 75:1(2018), pp. 405-426. [10.1007/s10915-017-0541-5]
Isospectral Domains for Discrete Elliptic Operators
Funaro, Daniele
2018
Abstract
Concerning the Laplace operator with homogeneous Dirichlet boundary conditions, the classical notion of isospectrality assumes that two domains are related when they give rise to the same spectrum. In two dimensions, non isometric, isospectral domains exist. It is not known however if all the eigenvalues relative to a specific domain can be preserved under suitable continuous deformation of its geometry. We show that this is possible when the 2D Laplacian is replaced by a finite dimensional version and the geometry is modified by respecting certain constraints. The analysis is carried out in a very small finite dimensional space, but it can be extended to more accurate finite-dimensional representations of the 2D Laplacian, with an increase of computational complexity. The aim of this paper is to introduce the preliminary steps in view of more serious generalizations.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris