We report a time-resolved study of the relaxation dynamics of Al films excited by ultrashort intense free-electron laser (FEL) extreme ultraviolet pulses. The system response was measured through a pump-probe detection scheme, in which an intense FEL pulse tuned around the Al L2,3 edge (72.5 eV) acted as the pump, while a time-delayed ultrafast pulse probed the near-infrared (NIR) reflectivity of the Al film. Remarkably, following the intense FEL excitation, the reflectivity of the film exhibited no detectable variation for hundreds of femtoseconds. Following this latency time, sizable reflectivity changes were observed. Exploiting recent theoretical calculations of the EUV-excited electron dynamics [N. Medvedev, Phys. Rev. Lett. 107, 165003 (2011)PRLTAO0031-900710.1103/PhysRevLett.107.165003], the delayed NIR-reflectivity evolution is interpreted invoking the formation of very-long-living nonthermal hot electron distributions in Al after exposure to intense EUV pulses. Our data represent the first evidence in the time domain of such an intriguing behavior.
Long-lived nonthermal electron distribution in aluminum excited by femtosecond extreme ultraviolet radiation / Bisio, Francesco; Principi, Emiliano; Magnozzi, Michele; Simoncig, Alberto; Giangrisostomi, Erika; Mincigrucci, Riccardo; Pasquali, Luca; Masciovecchio, Claudio; Boscherini, Federico; Canepa, Maurizio. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 96:8(2017), pp. 081119-1-081119-5. [10.1103/PhysRevB.96.081119]
Long-lived nonthermal electron distribution in aluminum excited by femtosecond extreme ultraviolet radiation
Pasquali, Luca;
2017
Abstract
We report a time-resolved study of the relaxation dynamics of Al films excited by ultrashort intense free-electron laser (FEL) extreme ultraviolet pulses. The system response was measured through a pump-probe detection scheme, in which an intense FEL pulse tuned around the Al L2,3 edge (72.5 eV) acted as the pump, while a time-delayed ultrafast pulse probed the near-infrared (NIR) reflectivity of the Al film. Remarkably, following the intense FEL excitation, the reflectivity of the film exhibited no detectable variation for hundreds of femtoseconds. Following this latency time, sizable reflectivity changes were observed. Exploiting recent theoretical calculations of the EUV-excited electron dynamics [N. Medvedev, Phys. Rev. Lett. 107, 165003 (2011)PRLTAO0031-900710.1103/PhysRevLett.107.165003], the delayed NIR-reflectivity evolution is interpreted invoking the formation of very-long-living nonthermal hot electron distributions in Al after exposure to intense EUV pulses. Our data represent the first evidence in the time domain of such an intriguing behavior.File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.96.081119.pdf
Accesso riservato
Descrizione: Articolo principale
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
257.27 kB
Formato
Adobe PDF
|
257.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris