In this chapter, we give a brief account of the notion of discrete varifolds, which are general and flexible tools to represent in a common framework regular surfaces and a large category of discrete representations of surfaces, eg point clouds, triangulated surfaces or volumetric representations. In this setting, a new notion of discrete mean curvature can be defined, relying only on the varifold structure and not on any specific feature of the underlying discretization type. This notion of discrete mean curvature is obtained thanks to a regularization of the so-called first variation of the varifold, it is easy to compute, and we prove that it has nice convergence properties. We illustrate this notion on 2D and 3D examples.

Discrete varifolds and surface approximation / Buet, Blanche; Leonardi, Gian Paolo; Masnou, Simon. - (2017), pp. 159-170.

Discrete varifolds and surface approximation

Gian Paolo Leonardi
Investigation
;
2017

Abstract

In this chapter, we give a brief account of the notion of discrete varifolds, which are general and flexible tools to represent in a common framework regular surfaces and a large category of discrete representations of surfaces, eg point clouds, triangulated surfaces or volumetric representations. In this setting, a new notion of discrete mean curvature can be defined, relying only on the varifold structure and not on any specific feature of the underlying discretization type. This notion of discrete mean curvature is obtained thanks to a regularization of the so-called first variation of the varifold, it is easy to compute, and we prove that it has nice convergence properties. We illustrate this notion on 2D and 3D examples.
2017
7-ago-2017
Topological Optimization and Optimal Transport: In the Applied Sciences
Maïtine Bergounioux, Édouard Oudet, Martin Rumpf, Guillaume Carlier, Thierry Champion, Filippo Santambrogio
9783110430417
De Gruyter
GERMANIA
Discrete varifolds and surface approximation / Buet, Blanche; Leonardi, Gian Paolo; Masnou, Simon. - (2017), pp. 159-170.
Buet, Blanche; Leonardi, Gian Paolo; Masnou, Simon
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1149618
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact