This work is concerned with the convergence properties and the numerical analysis of the preconditioned conjugate gradient (PCG) method applied to the solution of indefinite linear systems arising in nonlinear optimization. Our approach is based on the choice of quasidefinite preconditioners and of a suitable factorization routine. Some theoretical and numerical results about these preconditioners are obtained. Furthermore, we show the behaviour of the PCG method for different formulations of the indefinite system and we compare the effectiveness of the proposed variants.

On the solution of indefinite systems arising in nonlinear programming problems / Bonettini, S.; Ruggiero, V.; Tinti, F.. - In: NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS. - ISSN 1070-5325. - 14:10(2007), pp. 807-831. [10.1002/nla.558]

On the solution of indefinite systems arising in nonlinear programming problems

Bonettini S.
;
2007

Abstract

This work is concerned with the convergence properties and the numerical analysis of the preconditioned conjugate gradient (PCG) method applied to the solution of indefinite linear systems arising in nonlinear optimization. Our approach is based on the choice of quasidefinite preconditioners and of a suitable factorization routine. Some theoretical and numerical results about these preconditioners are obtained. Furthermore, we show the behaviour of the PCG method for different formulations of the indefinite system and we compare the effectiveness of the proposed variants.
2007
14
10
807
831
On the solution of indefinite systems arising in nonlinear programming problems / Bonettini, S.; Ruggiero, V.; Tinti, F.. - In: NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS. - ISSN 1070-5325. - 14:10(2007), pp. 807-831. [10.1002/nla.558]
Bonettini, S.; Ruggiero, V.; Tinti, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1148157
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact