In this paper we establish the convergence of a general primal-dual method for nonsmooth convex optimization problems whose structure is typical in the imaging framework, as, for example, in the Total Variation image restoration problems.

On the convergence of primal-dual hybrid gradient algorithms for total variation image restoration / Bonettini, S.; Ruggiero, V.. - In: JOURNAL OF MATHEMATICAL IMAGING AND VISION. - ISSN 0924-9907. - 44:3(2012), pp. 236-253. [10.1007/s10851-011-0324-9]

On the convergence of primal-dual hybrid gradient algorithms for total variation image restoration

Bonettini S.
;
2012

Abstract

In this paper we establish the convergence of a general primal-dual method for nonsmooth convex optimization problems whose structure is typical in the imaging framework, as, for example, in the Total Variation image restoration problems.
2012
44
3
236
253
On the convergence of primal-dual hybrid gradient algorithms for total variation image restoration / Bonettini, S.; Ruggiero, V.. - In: JOURNAL OF MATHEMATICAL IMAGING AND VISION. - ISSN 0924-9907. - 44:3(2012), pp. 236-253. [10.1007/s10851-011-0324-9]
Bonettini, S.; Ruggiero, V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1147507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 62
social impact