We have recently studied a simplified version of the path integral for a particle on a sphere, and more generally on maximally symmetric spaces, and proved that Riemann normal coordinates allow the use of a quadratic kinetic term in the particle action. The emerging linear sigma model contains a scalar effective potential that reproduces the effects of the curvature. We present here further details of the construction, and extend its perturbative evaluation to orders high enough to read off the type-A trace anomalies of a conformal scalar in dimensions d= 14 and d= 16.

On the simplified path integral on spheres / Bastianelli, Fiorenzo; Corradini, Olindo. - In: THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS. - ISSN 1434-6044. - 77:11(2017), pp. 1-12. [10.1140/epjc/s10052-017-5307-6]

On the simplified path integral on spheres

Corradini, Olindo
2017

Abstract

We have recently studied a simplified version of the path integral for a particle on a sphere, and more generally on maximally symmetric spaces, and proved that Riemann normal coordinates allow the use of a quadratic kinetic term in the particle action. The emerging linear sigma model contains a scalar effective potential that reproduces the effects of the curvature. We present here further details of the construction, and extend its perturbative evaluation to orders high enough to read off the type-A trace anomalies of a conformal scalar in dimensions d= 14 and d= 16.
2017
77
11
1
12
On the simplified path integral on spheres / Bastianelli, Fiorenzo; Corradini, Olindo. - In: THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS. - ISSN 1434-6044. - 77:11(2017), pp. 1-12. [10.1140/epjc/s10052-017-5307-6]
Bastianelli, Fiorenzo; Corradini, Olindo
File in questo prodotto:
File Dimensione Formato  
EPJC77.pdf

Open access

Descrizione: Articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 594.56 kB
Formato Adobe PDF
594.56 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1147428
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact