We have recently studied a simplified version of the path integral for a particle on a sphere, and more generally on maximally symmetric spaces, and proved that Riemann normal coordinates allow the use of a quadratic kinetic term in the particle action. The emerging linear sigma model contains a scalar effective potential that reproduces the effects of the curvature. We present here further details of the construction, and extend its perturbative evaluation to orders high enough to read off the type-A trace anomalies of a conformal scalar in dimensions d= 14 and d= 16.
On the simplified path integral on spheres / Bastianelli, Fiorenzo; Corradini, Olindo. - In: THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS. - ISSN 1434-6044. - 77:11(2017), pp. 1-12. [10.1140/epjc/s10052-017-5307-6]
On the simplified path integral on spheres
Corradini, Olindo
2017
Abstract
We have recently studied a simplified version of the path integral for a particle on a sphere, and more generally on maximally symmetric spaces, and proved that Riemann normal coordinates allow the use of a quadratic kinetic term in the particle action. The emerging linear sigma model contains a scalar effective potential that reproduces the effects of the curvature. We present here further details of the construction, and extend its perturbative evaluation to orders high enough to read off the type-A trace anomalies of a conformal scalar in dimensions d= 14 and d= 16.File | Dimensione | Formato | |
---|---|---|---|
EPJC77.pdf
Open access
Descrizione: Articolo principale
Tipologia:
Versione pubblicata dall'editore
Dimensione
594.56 kB
Formato
Adobe PDF
|
594.56 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris