Microwaves at the ISM frequency of 2450 and 5800 MHz have been exploited to prepare FeCoNiCrAl-family high entropy alloys by direct heating of pressed mixtures of metal powders. The aim of this work is to explore a new microwave assisted near-net-shape technology, using powder metallurgy approach for the preparation of high entropy alloys, able to overcome the limits of current melting technologies (defects formation) or solid state ones (time demanding). Results show that direct microwave heating of the powder precursors occurs, and further heating generation is favored by the ignition of exothermal reactions in the compound. Microwave processing, exploited both for the ignition and sustaining of such reactions, has been compared to reactive sintering in laboratory furnace and mechanical alloying in a planetary ball milling. Results demonstrate that microwave required the shortest time and lowest energy consumption, thus it is promising time- and cost-saving synthetic route.

Microwave processing of high entropy alloys: A powder metallurgy approach / Veronesi, Paolo; Colombini, Elena; Rosa, Roberto; Leonelli, Cristina; Garuti, Marco. - In: CHEMICAL ENGINEERING AND PROCESSING. - ISSN 1873-3204. - 122:(2017), pp. 397-403. [10.1016/j.cep.2017.02.016]

Microwave processing of high entropy alloys: A powder metallurgy approach

Paolo Veronesi
;
Elena Colombini;Roberto Rosa;Cristina Leonelli;
2017

Abstract

Microwaves at the ISM frequency of 2450 and 5800 MHz have been exploited to prepare FeCoNiCrAl-family high entropy alloys by direct heating of pressed mixtures of metal powders. The aim of this work is to explore a new microwave assisted near-net-shape technology, using powder metallurgy approach for the preparation of high entropy alloys, able to overcome the limits of current melting technologies (defects formation) or solid state ones (time demanding). Results show that direct microwave heating of the powder precursors occurs, and further heating generation is favored by the ignition of exothermal reactions in the compound. Microwave processing, exploited both for the ignition and sustaining of such reactions, has been compared to reactive sintering in laboratory furnace and mechanical alloying in a planetary ball milling. Results demonstrate that microwave required the shortest time and lowest energy consumption, thus it is promising time- and cost-saving synthetic route.
2017
122
397
403
Microwave processing of high entropy alloys: A powder metallurgy approach / Veronesi, Paolo; Colombini, Elena; Rosa, Roberto; Leonelli, Cristina; Garuti, Marco. - In: CHEMICAL ENGINEERING AND PROCESSING. - ISSN 1873-3204. - 122:(2017), pp. 397-403. [10.1016/j.cep.2017.02.016]
Veronesi, Paolo; Colombini, Elena; Rosa, Roberto; Leonelli, Cristina; Garuti, Marco
File in questo prodotto:
File Dimensione Formato  
CePPI.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 3.7 MB
Formato Adobe PDF
3.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
j.cep.2017.02.016.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1147308
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 25
social impact