We show that the maximal Cheeger set of a Jordan domain Ω without necks is the union of all balls of radius r=h(Ω)^−1 contained in Ω. Here, h(Ω) denotes the Cheeger constant of Ω, that is, the infimum of the ratio of perimeter over area among subsets of Ω, and a Cheeger set is a set attaining the infimum. The radius r is shown to be the unique number such that the area of the inner parallel set Ωr is equal to π r^2. The proof of the main theorem requires the combination of several intermediate facts, some of which are of interest in their own right. Examples are given demonstrating the generality of the result as well as the sharpness of our assumptions. In particular, as an application of the main theorem, we illustrate how to effectively approximate the Cheeger constant of the Koch snowflake.
The Cheeger constant of a Jordan domain without necks / Leonardi, Gian Paolo; Neumayer, Robin; Saracco, Giorgio. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1432-0835. - 56:6(2017), pp. 1-29. [10.1007/s00526-017-1263-0]
The Cheeger constant of a Jordan domain without necks
Leonardi, Gian Paolo
Investigation
;NEUMAYER, ROBINInvestigation
;Saracco, GiorgioInvestigation
2017
Abstract
We show that the maximal Cheeger set of a Jordan domain Ω without necks is the union of all balls of radius r=h(Ω)^−1 contained in Ω. Here, h(Ω) denotes the Cheeger constant of Ω, that is, the infimum of the ratio of perimeter over area among subsets of Ω, and a Cheeger set is a set attaining the infimum. The radius r is shown to be the unique number such that the area of the inner parallel set Ωr is equal to π r^2. The proof of the main theorem requires the combination of several intermediate facts, some of which are of interest in their own right. Examples are given demonstrating the generality of the result as well as the sharpness of our assumptions. In particular, as an application of the main theorem, we illustrate how to effectively approximate the Cheeger constant of the Koch snowflake.File | Dimensione | Formato | |
---|---|---|---|
CheegerFinal_rev1.pdf
Open access
Descrizione: articolo principale
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
471.43 kB
Formato
Adobe PDF
|
471.43 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris