In the present study non-integer order or fractional derivative rheological models are applied to the dynamical analysis of mechanical systems. Their effectiveness in fitting experimental data on wide intervals of frequency by means of a minimum number of parameters is first discussed in comparison with classical integer order derivative models. A technique for evaluating an equivalent damping ratio valid for fractional derivative models is introduced, making it possible to test their ability in reproducing experimentally obtained damping estimates. A numerical procedure for the experimental identification of the parameters of the Fractional Zener rheological model is then presented and applied to a high-density polyethylene (HDPE) beam in axial and flexural vibrations.
Analytical modelling and experimental identification of viscoelastic mechanical systems / Catania, Giuseppe; Sorrentino, Silvio. - (2007), pp. 403-416.
Data di pubblicazione: | 2007 |
Titolo: | Analytical modelling and experimental identification of viscoelastic mechanical systems |
Autore/i: | Catania, Giuseppe; Sorrentino, Silvio |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/978-1-4020-6042-7_28 |
Codice identificativo Scopus: | 2-s2.0-69949115024 |
Codice identificativo ISI: | WOS:000250957200028 |
Titolo del libro: | Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering |
A cura di: | Sabatier, J.; Agrawal, O.P.; Tenreiro Machado, J.A. |
ISBN: | 9781402060410 |
Editore: | Springer |
Nazione editore: | STATI UNITI D'AMERICA |
Citazione: | Analytical modelling and experimental identification of viscoelastic mechanical systems / Catania, Giuseppe; Sorrentino, Silvio. - (2007), pp. 403-416. |
Tipologia | Capitolo/Saggio |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
Springer-2007.pdf | Articolo principale | Post-print dell'autore (bozza post referaggio) | Administrator Richiedi una copia |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris