In this paper we consider a scalar parabolic equation on a star graph; the model is quite general but what we have in mind is the description of traffic flows at a crossroad. In particular, we do not necessarily require the continuity of the unknown function at the node of the graph and, moreover, the diffusivity can be degenerate. Our main result concerns a necessary and sufficient algebraic condition for the existence of traveling waves in the graph. We also study in great detail some examples corresponding to quadratic and logarithmic flux functions, for different diffusivities, to which our results apply.
Traveling waves for degenerate diffusive equations on networks / Corli, Andrea; Ruvo, Lorenzo di; MALAGUTI, Luisa; Rosini, Massimiliano D.. - In: NETWORKS AND HETEROGENEOUS MEDIA. - ISSN 1556-1801. - 12:3(2017), pp. 339-370. [10.3934/nhm.2017015]
Traveling waves for degenerate diffusive equations on networks
MALAGUTI, Luisa;
2017
Abstract
In this paper we consider a scalar parabolic equation on a star graph; the model is quite general but what we have in mind is the description of traffic flows at a crossroad. In particular, we do not necessarily require the continuity of the unknown function at the node of the graph and, moreover, the diffusivity can be degenerate. Our main result concerns a necessary and sufficient algebraic condition for the existence of traveling waves in the graph. We also study in great detail some examples corresponding to quadratic and logarithmic flux functions, for different diffusivities, to which our results apply.File | Dimensione | Formato | |
---|---|---|---|
CDRMR-revised2.pdf
Open access
Descrizione: Articolo principale
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
510.66 kB
Formato
Adobe PDF
|
510.66 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris