This paper deals with post processing of vibration data coming from a experimental tests. An AC motor running at constant speed is provided with a faulted ball bearing, tests are done changing the type of fault (outer race, inner race and balls) and the stage of the fault (three levels of severity: from early to late stage). A healthy bearing is also measured for the aim of comparison. The post processing simply consists in the computation of scalar quantities that are used in condition monitoring of mechanical systems: variance, skewness and kurtosis. These are the second, the third and the fourth central moment of a real-valued function respectively. The variance is the expectation of the squared deviation of a random variable from its mean, the skewness is the measure of the lopsidedness of the distribution, while the kurtosis is a measure of the heaviness of the tail of the distribution, compared to the normal distribution of the same variance. Most of the papers in the last decades use them with excellent results. This paper does not propose a new fault detection technique, but it focuses on the informative content of those three quantities in ball bearing diagnostics from a statistical point of view. In this paper, a discriminant function analysis is used, to determine which central moment has a high discrimination power in the diagnostics of ball bearing in stationary conditions.

Statistical evidence of central moment as fault indicators in ball bearing diagnostics / Cocconcelli, Marco; Curcurù, Giuseppe; Rubini, Riccardo. - (2017). (Intervento presentato al convegno The International Conference Surveillance 9 tenutosi a Fes (Marocco) nel 22-24 May 2017).

Statistical evidence of central moment as fault indicators in ball bearing diagnostics

COCCONCELLI, Marco;RUBINI, Riccardo
2017

Abstract

This paper deals with post processing of vibration data coming from a experimental tests. An AC motor running at constant speed is provided with a faulted ball bearing, tests are done changing the type of fault (outer race, inner race and balls) and the stage of the fault (three levels of severity: from early to late stage). A healthy bearing is also measured for the aim of comparison. The post processing simply consists in the computation of scalar quantities that are used in condition monitoring of mechanical systems: variance, skewness and kurtosis. These are the second, the third and the fourth central moment of a real-valued function respectively. The variance is the expectation of the squared deviation of a random variable from its mean, the skewness is the measure of the lopsidedness of the distribution, while the kurtosis is a measure of the heaviness of the tail of the distribution, compared to the normal distribution of the same variance. Most of the papers in the last decades use them with excellent results. This paper does not propose a new fault detection technique, but it focuses on the informative content of those three quantities in ball bearing diagnostics from a statistical point of view. In this paper, a discriminant function analysis is used, to determine which central moment has a high discrimination power in the diagnostics of ball bearing in stationary conditions.
2017
The International Conference Surveillance 9
Fes (Marocco)
22-24 May 2017
Cocconcelli, Marco; Curcurù, Giuseppe; Rubini, Riccardo
Statistical evidence of central moment as fault indicators in ball bearing diagnostics / Cocconcelli, Marco; Curcurù, Giuseppe; Rubini, Riccardo. - (2017). (Intervento presentato al convegno The International Conference Surveillance 9 tenutosi a Fes (Marocco) nel 22-24 May 2017).
File in questo prodotto:
File Dimensione Formato  
statistical evidence.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1144823
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact