In the literature, a great interest is reserved to complex systems (i.e. serial or parallel or mixed systems), constituted by the interconnection of single elements. The evolution of system reliability depends on its structure as well as on the evolution of the reliability of its individual elements. Maintenance activities on systems strongly affect element aging and system’s operating life. Preventive maintenance, for example, is used to increase system availability reducing, as a consequence, the probability of failure. Generally, maintenance plans are performed with respect to some criteria depending on cost or on reliability/availability requirements. Therefore, the optimum maintenance scheduling of a system can be based on the minimization of the total cost or on the maximization of its availability. Many Authors emphasize the requirement on system reliability. In [1], for example, the concept of reliability equivalence from simple series and parallel systems to some complex systems is presented and reliability equivalence factors of complex systems are obtained. One of the most critical problems in preventive maintenance is the determination of the optimum frequency to perform maintenance actions on systems, in order to ensure a pre-defined level of availability. In this paper the predictive maintenance policy, for a single element, is extended to a system constituted by two series elements, named A and B. The transition from a single unit to a series system is not immediate and presents a great number of problems. Actually, when a maintenance action is scheduled for a system of this kind, the decision maker must decide if it is more convenient (with respect to some chosen criterion) to intervene on element A or B or on both. The proposed methodology deals with this practical problem in the context of the predictive maintenance policy. Research on this topic is in a running state and the methodology is only theoretically presented.
Extension of the predictive policy to a series of mechanical systems / Curcurù, Giuseppe; Cocconcelli, Marco; Rubini, Riccardo; Galante, Giacomo Maria. - (2017). (Intervento presentato al convegno The International Conference Surveillance 9 tenutosi a Fes (Marocco) nel 22-24 May 2017).
Extension of the predictive policy to a series of mechanical systems
COCCONCELLI, Marco;RUBINI, Riccardo;
2017
Abstract
In the literature, a great interest is reserved to complex systems (i.e. serial or parallel or mixed systems), constituted by the interconnection of single elements. The evolution of system reliability depends on its structure as well as on the evolution of the reliability of its individual elements. Maintenance activities on systems strongly affect element aging and system’s operating life. Preventive maintenance, for example, is used to increase system availability reducing, as a consequence, the probability of failure. Generally, maintenance plans are performed with respect to some criteria depending on cost or on reliability/availability requirements. Therefore, the optimum maintenance scheduling of a system can be based on the minimization of the total cost or on the maximization of its availability. Many Authors emphasize the requirement on system reliability. In [1], for example, the concept of reliability equivalence from simple series and parallel systems to some complex systems is presented and reliability equivalence factors of complex systems are obtained. One of the most critical problems in preventive maintenance is the determination of the optimum frequency to perform maintenance actions on systems, in order to ensure a pre-defined level of availability. In this paper the predictive maintenance policy, for a single element, is extended to a system constituted by two series elements, named A and B. The transition from a single unit to a series system is not immediate and presents a great number of problems. Actually, when a maintenance action is scheduled for a system of this kind, the decision maker must decide if it is more convenient (with respect to some chosen criterion) to intervene on element A or B or on both. The proposed methodology deals with this practical problem in the context of the predictive maintenance policy. Research on this topic is in a running state and the methodology is only theoretically presented.File | Dimensione | Formato | |
---|---|---|---|
extension.pdf
Open access
Descrizione: Articolo principale
Tipologia:
Versione pubblicata dall'editore
Dimensione
113.9 kB
Formato
Adobe PDF
|
113.9 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris