This paper presents two strategies that can be used to improve the speed of Connected Components Labeling algorithms. The first one operates on optimal decision trees considering image patterns occurrences, while the second one articulates how two scan algorithms can be parallelized using multi-threading. Experimental results demonstrate that the proposed methodologies reduce the total execution time of state-of-the-art two scan algorithms.

Two More Strategies to Speed Up Connected Components Labeling Algorithms / Bolelli, Federico; Cancilla, Michele; Grana, Costantino. - 10485:(2017), pp. 48-58. (Intervento presentato al convegno International Conference on Image Analysis and Processing tenutosi a Catania nel Sep 11-15) [10.1007/978-3-319-68548-9_5].

Two More Strategies to Speed Up Connected Components Labeling Algorithms

Federico Bolelli;Michele Cancilla;Costantino Grana
2017

Abstract

This paper presents two strategies that can be used to improve the speed of Connected Components Labeling algorithms. The first one operates on optimal decision trees considering image patterns occurrences, while the second one articulates how two scan algorithms can be parallelized using multi-threading. Experimental results demonstrate that the proposed methodologies reduce the total execution time of state-of-the-art two scan algorithms.
2017
13-ott-2017
International Conference on Image Analysis and Processing
Catania
Sep 11-15
10485
48
58
Bolelli, Federico; Cancilla, Michele; Grana, Costantino
Two More Strategies to Speed Up Connected Components Labeling Algorithms / Bolelli, Federico; Cancilla, Michele; Grana, Costantino. - 10485:(2017), pp. 48-58. (Intervento presentato al convegno International Conference on Image Analysis and Processing tenutosi a Catania nel Sep 11-15) [10.1007/978-3-319-68548-9_5].
File in questo prodotto:
File Dimensione Formato  
ICIAP- 2017 - Two More Strategies to Speed Up Connected Components Labeling Algorithms.pdf

Open access

Descrizione: Articolo principale
Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 923.72 kB
Formato Adobe PDF
923.72 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1143692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact