In this paper we propose a deep architecture for detecting people attributes (e.g. gender, race, clothing ...) in surveillance contexts. Our proposal explicitly deal with poor resolution and occlusion issues that often occur in surveillance footages by enhancing the images by means of Deep Convolutional Generative Adversarial Networks (DCGAN). Experiments show that by combining both our Generative Reconstruction and Deep Attribute Classification Network we can effectively extract attributes even when resolution is poor and in presence of strong occlusions up to 80% of the whole person figure.
Generative Adversarial Models for People Attribute Recognition in Surveillance / Fabbri, Matteo; Calderara, Simone; Cucchiara, Rita. - (2017). ((Intervento presentato al convegno 14th IEEE International Conference on Advanced Video and Signal based Surveillance tenutosi a Lecce, Italy nel 29th August - 1st September, 2017.
Data di pubblicazione: | 2017 |
Titolo: | Generative Adversarial Models for People Attribute Recognition in Surveillance |
Autore/i: | Fabbri, Matteo; Calderara, Simone; Cucchiara, Rita |
Autore/i UNIMORE: | |
Codice identificativo Scopus: | 2-s2.0-85039923549 |
Codice identificativo ISI: | WOS:000426203700063 |
Nome del convegno: | 14th IEEE International Conference on Advanced Video and Signal based Surveillance |
Luogo del convegno: | Lecce, Italy |
Data del convegno: | 29th August - 1st September, 2017 |
Citazione: | Generative Adversarial Models for People Attribute Recognition in Surveillance / Fabbri, Matteo; Calderara, Simone; Cucchiara, Rita. - (2017). ((Intervento presentato al convegno 14th IEEE International Conference on Advanced Video and Signal based Surveillance tenutosi a Lecce, Italy nel 29th August - 1st September, 2017. |
Tipologia | Relazione in Atti di Convegno |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
edited_1707.02240.pdf | Articolo principale | Post-print dell'autore (bozza post referaggio) | Open Access Visualizza/Apri |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris