In this paper we propose a deep architecture for detecting people attributes (e.g. gender, race, clothing ...) in surveillance contexts. Our proposal explicitly deal with poor resolution and occlusion issues that often occur in surveillance footages by enhancing the images by means of Deep Convolutional Generative Adversarial Networks (DCGAN). Experiments show that by combining both our Generative Reconstruction and Deep Attribute Classification Network we can effectively extract attributes even when resolution is poor and in presence of strong occlusions up to 80% of the whole person figure.

Generative Adversarial Models for People Attribute Recognition in Surveillance / Fabbri, Matteo; Calderara, Simone; Cucchiara, Rita. - (2017). (Intervento presentato al convegno 14th IEEE International Conference on Advanced Video and Signal based Surveillance tenutosi a Lecce, Italy nel 29th August - 1st September, 2017).

Generative Adversarial Models for People Attribute Recognition in Surveillance

FABBRI, MATTEO;CALDERARA, Simone;CUCCHIARA, Rita
2017

Abstract

In this paper we propose a deep architecture for detecting people attributes (e.g. gender, race, clothing ...) in surveillance contexts. Our proposal explicitly deal with poor resolution and occlusion issues that often occur in surveillance footages by enhancing the images by means of Deep Convolutional Generative Adversarial Networks (DCGAN). Experiments show that by combining both our Generative Reconstruction and Deep Attribute Classification Network we can effectively extract attributes even when resolution is poor and in presence of strong occlusions up to 80% of the whole person figure.
2017
14th IEEE International Conference on Advanced Video and Signal based Surveillance
Lecce, Italy
29th August - 1st September, 2017
Fabbri, Matteo; Calderara, Simone; Cucchiara, Rita
Generative Adversarial Models for People Attribute Recognition in Surveillance / Fabbri, Matteo; Calderara, Simone; Cucchiara, Rita. - (2017). (Intervento presentato al convegno 14th IEEE International Conference on Advanced Video and Signal based Surveillance tenutosi a Lecce, Italy nel 29th August - 1st September, 2017).
File in questo prodotto:
File Dimensione Formato  
edited_1707.02240.pdf

Open access

Descrizione: Articolo principale
Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 3.3 MB
Formato Adobe PDF
3.3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1142848
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 17
social impact