Lightweight design, structural performance and safety requirements represent the reference tasks for the development of innovative cars. For these reasons, both composites and Finite Element (FE) modelling have been widely employed in the last years. This study illustrates a numerical-experimental correlation methodology for Carbon Fibre Reinforcement Plastic (CFRP) laminates employed in a front Maserati hood. At first, an elastic-plastic material law is assessed for orthotropic shells using the Crash Survivability (CRASURV) nonlinear formulation, and a card material is compiled. A wide experimental campaign is performed according to the ASTM standards. Therefore, tensile, compression, shear, inter-laminar shear strength tests and drop weight tests are mandatory for the evaluation of the material properties and its failure modes. Finally, nonlinear forecasts of head impact on the hood are examined, and a preliminary numerical-experimental correlation is presented.
Numerical-experimental correlation of composite laminates for automotive applications / Cavazzoni, Luca; Calacci, Fabio; Lo Presti, Ignazio; Mantovani, Sara. - (2017), pp. 1223-1228. (Intervento presentato al convegno 7th International Conference on Mechanics and Materials in Design tenutosi a Albufeira/Portugal nel 11-15 Giugno 2017).
Numerical-experimental correlation of composite laminates for automotive applications
Cavazzoni, Luca
;Calacci, Fabio;Lo Presti,Ignazio;MANTOVANI, SARA
2017
Abstract
Lightweight design, structural performance and safety requirements represent the reference tasks for the development of innovative cars. For these reasons, both composites and Finite Element (FE) modelling have been widely employed in the last years. This study illustrates a numerical-experimental correlation methodology for Carbon Fibre Reinforcement Plastic (CFRP) laminates employed in a front Maserati hood. At first, an elastic-plastic material law is assessed for orthotropic shells using the Crash Survivability (CRASURV) nonlinear formulation, and a card material is compiled. A wide experimental campaign is performed according to the ASTM standards. Therefore, tensile, compression, shear, inter-laminar shear strength tests and drop weight tests are mandatory for the evaluation of the material properties and its failure modes. Finally, nonlinear forecasts of head impact on the hood are examined, and a preliminary numerical-experimental correlation is presented.File | Dimensione | Formato | |
---|---|---|---|
__pubw2_2017_LCavazzoni_Numerical experimental correlation of composite laminates for automotive applications.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.12 MB
Formato
Adobe PDF
|
2.12 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris