In this paper we present an innovative technique to semi-automatically index handwritten word images. The proposed method is based on HOG descriptors and exploits Dynamic Time Warping technique to compare feature vectors elaborated from single handwritten words. Our strategy is applied to a new challenging dataset extracted from Italian civil registries of the XIX century. Experimental results, compared with some previously developed word spotting strategies, confirmed that our method outperforms competitors.

Historical Handwritten Text Images Word Spotting through Sliding Window HOG Features / Bolelli, Federico; Borghi, Guido; Grana, Costantino. - 10484:(2017), pp. 729-738. (Intervento presentato al convegno International Conference on Image Analysis and Processing tenutosi a Catania, Italy nel Sep 11-15) [10.1007/978-3-319-68560-1_65].

Historical Handwritten Text Images Word Spotting through Sliding Window HOG Features

BOLELLI, FEDERICO;BORGHI, GUIDO;GRANA, Costantino
2017

Abstract

In this paper we present an innovative technique to semi-automatically index handwritten word images. The proposed method is based on HOG descriptors and exploits Dynamic Time Warping technique to compare feature vectors elaborated from single handwritten words. Our strategy is applied to a new challenging dataset extracted from Italian civil registries of the XIX century. Experimental results, compared with some previously developed word spotting strategies, confirmed that our method outperforms competitors.
2017
13-ott-2017
International Conference on Image Analysis and Processing
Catania, Italy
Sep 11-15
10484
729
738
Bolelli, Federico; Borghi, Guido; Grana, Costantino
Historical Handwritten Text Images Word Spotting through Sliding Window HOG Features / Bolelli, Federico; Borghi, Guido; Grana, Costantino. - 10484:(2017), pp. 729-738. (Intervento presentato al convegno International Conference on Image Analysis and Processing tenutosi a Catania, Italy nel Sep 11-15) [10.1007/978-3-319-68560-1_65].
File in questo prodotto:
File Dimensione Formato  
iciap-2017-historical.pdf

Open access

Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 7.69 MB
Formato Adobe PDF
7.69 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1138820
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 13
social impact