We investigate the bending characteristics of leakage channel fibers (LCFs) to achieve large mode area (LMA) and effectively single-mode operation with a practically allowable bending radius for compact Yb-doped fiber applications. Through numerical simulations, carried by the full-vectorial finite-element method, we present the limitations on the effective area of LCFs under bent condition and compare their limits with that of conventional step-index LMA fibers. Due to a better controllability of the low numerical aperture and a large value of the differential bending loss (similar to 20 dB/m) between the fundamental and higher order modes in LCFs, the LMA of similar to 500 mu m(2) (core diameter of similar to 36 mu m) at 1064 nm can be achieved when the optimized LCF is bent into a 10 cm bending radius.
Limitation on Effective Area of Bent Large-Mode-Area Leakage Channel Fibers / Saitoh, Kunimasa; Varshney, Shailendra; Sasaki, Kaori; Rosa, Lorenzo; Pal, Mrinmay; Paul Mukul, Chandra; Ghosh, Debashri; Bhadra Shyamal, Kumar; Koshiba, Masanori. - In: JOURNAL OF LIGHTWAVE TECHNOLOGY. - ISSN 0733-8724. - 29:17(2011), pp. 2609-2615. [10.1109/JLT.2011.2161603]
Limitation on Effective Area of Bent Large-Mode-Area Leakage Channel Fibers
ROSA, Lorenzo;
2011
Abstract
We investigate the bending characteristics of leakage channel fibers (LCFs) to achieve large mode area (LMA) and effectively single-mode operation with a practically allowable bending radius for compact Yb-doped fiber applications. Through numerical simulations, carried by the full-vectorial finite-element method, we present the limitations on the effective area of LCFs under bent condition and compare their limits with that of conventional step-index LMA fibers. Due to a better controllability of the low numerical aperture and a large value of the differential bending loss (similar to 20 dB/m) between the fundamental and higher order modes in LCFs, the LMA of similar to 500 mu m(2) (core diameter of similar to 36 mu m) at 1064 nm can be achieved when the optimized LCF is bent into a 10 cm bending radius.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris