We demonstrate the qualitative analysis of surface-enhanced Raman scattering (SERS) intensity and optical extinction by experimentally and numerically. This analytical methods are well matched not only the simple square lattice array of nanostructures, but also the rectangular lattices. We also demonstrate SERS selectivity of modes controlling the optical extinction of excitation and scattering wavelength. Both square lattice and rectangular lattice have similar tendency, but the rectangular lattice structures have much higher selectivity of SERS modes.
SERS scaling rules / Nishijima, Yoshiaki; Hashimoto, Yoshikazu; Rosa, Lorenzo; Khurgin Jacob, B.; Juodkazis, Saulius. - In: APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING. - ISSN 0947-8396. - 117:2(2014), pp. 647-650. [10.1007/s00339-014-8717-4]
SERS scaling rules
ROSA, Lorenzo;
2014
Abstract
We demonstrate the qualitative analysis of surface-enhanced Raman scattering (SERS) intensity and optical extinction by experimentally and numerically. This analytical methods are well matched not only the simple square lattice array of nanostructures, but also the rectangular lattices. We also demonstrate SERS selectivity of modes controlling the optical extinction of excitation and scattering wavelength. Both square lattice and rectangular lattice have similar tendency, but the rectangular lattice structures have much higher selectivity of SERS modes.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris