The proteasome inhibitor bortezomib is a new targeted treatment option for refractory or relapsed acute lymphoblastic leukemia (ALL) patients. However, a limited efficacy of bortezomib alone has been reported. A terminal pro-apoptotic endoplasmic reticulum (ER) stress/unfolded protein response (UPR) is one of the several mechanisms of bortezomib-induced apoptosis. Recently, it has been documented that UPR disruption could be considered a selective anti-leukemia therapy. CX- 4945, a potent casein kinase (CK) 2 inhibitor, has been found to induce apoptotic cell death in T-ALL preclinical models, via perturbation of ER/UPR pathway. In this study, we analyzed in T- and B-ALL preclinical settings, the molecular mechanisms of synergistic apoptotic effects observed after bortezomib/CX-4945 combined treatment. We demonstrated that, adding CX-4945 after bortezomib treatment, prevented leukemic cells from engaging a functional UPR in order to buffer the bortezomibmediated proteotoxic stress in ER lumen. We documented that the combined treatment decreased pro-survival ER chaperon BIP/Grp78 expression, via reduction of chaperoning activity of Hsp90. Bortezomib/CX-4945 treatment inhibited NF-κB signaling in T-ALL cell lines and primary cells from T-ALL patients, but, intriguingly, in B-ALL cells the drug combination activated NF-κB p65 pro-apoptotic functions. In fact in B-cells, the combined treatment induced p65-HDAC1 association with consequent repression of the anti-apoptotic target genes, Bcl-xL and XIAP. Exposure to NEMO (IKKγ)-binding domain inhibitor peptide reduced the cytotoxic effects of bortezomib/CX-4945 treatment. Overall, our findings demonstrated that CK2 inhibition could be useful in combination with bortezomib as a novel therapeutic strategy in both T- and B-ALL.

Synergistic cytotoxic effects of bortezomib and CK2 inhibitor CX-4945 in acute lymphoblastic leukemia: Turning offthe prosurvival ER chaperone BIP/Grp78 and turning on the proapoptotic NF-κB / Buontempo, Francesca; Orsini, Ester; Lonetti, Annalisa; Cappellini, Alessandra; Chiarini, Francesca; Evangelisti, Camilla; Evangelisti, Cecilia; Melchionda, Fraia; Pession, Andrea; Bertaina, Alice; Locatelli, Franco; Bertacchini, Jessika; Neri, Luca Maria; Mccubrey, James A.; Martelli, Alberto Maria. - In: ONCOTARGET. - ISSN 1949-2553. - 7:2(2016), pp. 1323-1340. [10.18632/oncotarget.6361]

Synergistic cytotoxic effects of bortezomib and CK2 inhibitor CX-4945 in acute lymphoblastic leukemia: Turning offthe prosurvival ER chaperone BIP/Grp78 and turning on the proapoptotic NF-κB

Chiarini, Francesca;BERTACCHINI, Jessika;
2016

Abstract

The proteasome inhibitor bortezomib is a new targeted treatment option for refractory or relapsed acute lymphoblastic leukemia (ALL) patients. However, a limited efficacy of bortezomib alone has been reported. A terminal pro-apoptotic endoplasmic reticulum (ER) stress/unfolded protein response (UPR) is one of the several mechanisms of bortezomib-induced apoptosis. Recently, it has been documented that UPR disruption could be considered a selective anti-leukemia therapy. CX- 4945, a potent casein kinase (CK) 2 inhibitor, has been found to induce apoptotic cell death in T-ALL preclinical models, via perturbation of ER/UPR pathway. In this study, we analyzed in T- and B-ALL preclinical settings, the molecular mechanisms of synergistic apoptotic effects observed after bortezomib/CX-4945 combined treatment. We demonstrated that, adding CX-4945 after bortezomib treatment, prevented leukemic cells from engaging a functional UPR in order to buffer the bortezomibmediated proteotoxic stress in ER lumen. We documented that the combined treatment decreased pro-survival ER chaperon BIP/Grp78 expression, via reduction of chaperoning activity of Hsp90. Bortezomib/CX-4945 treatment inhibited NF-κB signaling in T-ALL cell lines and primary cells from T-ALL patients, but, intriguingly, in B-ALL cells the drug combination activated NF-κB p65 pro-apoptotic functions. In fact in B-cells, the combined treatment induced p65-HDAC1 association with consequent repression of the anti-apoptotic target genes, Bcl-xL and XIAP. Exposure to NEMO (IKKγ)-binding domain inhibitor peptide reduced the cytotoxic effects of bortezomib/CX-4945 treatment. Overall, our findings demonstrated that CK2 inhibition could be useful in combination with bortezomib as a novel therapeutic strategy in both T- and B-ALL.
2016
7
2
1323
1340
Synergistic cytotoxic effects of bortezomib and CK2 inhibitor CX-4945 in acute lymphoblastic leukemia: Turning offthe prosurvival ER chaperone BIP/Grp78 and turning on the proapoptotic NF-κB / Buontempo, Francesca; Orsini, Ester; Lonetti, Annalisa; Cappellini, Alessandra; Chiarini, Francesca; Evangelisti, Camilla; Evangelisti, Cecilia; Melchionda, Fraia; Pession, Andrea; Bertaina, Alice; Locatelli, Franco; Bertacchini, Jessika; Neri, Luca Maria; Mccubrey, James A.; Martelli, Alberto Maria. - In: ONCOTARGET. - ISSN 1949-2553. - 7:2(2016), pp. 1323-1340. [10.18632/oncotarget.6361]
Buontempo, Francesca; Orsini, Ester; Lonetti, Annalisa; Cappellini, Alessandra; Chiarini, Francesca; Evangelisti, Camilla; Evangelisti, Cecilia; Melch...espandi
File in questo prodotto:
File Dimensione Formato  
6361-95558-5-PB.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 5 MB
Formato Adobe PDF
5 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1135977
Citazioni
  • ???jsp.display-item.citation.pmc??? 23
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact