Clay based ceramic composite materials with hydraulic permeability were elaborated using sawdust as porogent agent. Their mechanical, morphological, microstructural and pore network properties were investigated. Mixtures in various ratios of two kaolinite clay minerals, Ba (highly plastic) and Va (sand-rich) constitute the five ceramic matrixes studied (CM1, CM2, CM3, CM4 and CM5). Due to their high flexural strength, CM3 and CM4 received 0%, 5%, 10% and 15% sawdust before firing, to improve the porosity of the final matrixes. Results revealed that 900–1000 °C is the range of temperature necessary to get good sintering and flexural strength (≥2 MPa). A typical clay-sawdust based materials (parallepipedic bricks) present porosity ≥40 vol% and 1.5 g/cm3 density. Characterizations such as FTIR, SEM, MIP and flow permeability of ceramic candles were performed. A Hydraulic permeability of ~10 mDarcy was obtained and the mean pore diameter varies from 0.05 to 0.1 µm, in agreement with the microstructure exhibited by the ceramic candles. In the presence of sawdust, pores with size up to 10 µm were observed, justifying the increase of flowing permeability. The elaborated matrixes are promising candidates for microfiltration.

Design of ceramic filters using Clay/Sawdust composites: Effect of pore network on the hydraulic permeability / Youmoue, Martine; Fongang, R. T. Téné; Sofack, J. C.; Kamseu, Elie; Melo, U. Chinje; Tonle, Ignas K.; Leonelli, Cristina; Rossignol, Sylvie. - In: CERAMICS INTERNATIONAL. - ISSN 0272-8842. - 43:5(2017), pp. 4496-4507. [10.1016/j.ceramint.2016.12.101]

Design of ceramic filters using Clay/Sawdust composites: Effect of pore network on the hydraulic permeability

KAMSEU, Elie;LEONELLI, Cristina;
2017

Abstract

Clay based ceramic composite materials with hydraulic permeability were elaborated using sawdust as porogent agent. Their mechanical, morphological, microstructural and pore network properties were investigated. Mixtures in various ratios of two kaolinite clay minerals, Ba (highly plastic) and Va (sand-rich) constitute the five ceramic matrixes studied (CM1, CM2, CM3, CM4 and CM5). Due to their high flexural strength, CM3 and CM4 received 0%, 5%, 10% and 15% sawdust before firing, to improve the porosity of the final matrixes. Results revealed that 900–1000 °C is the range of temperature necessary to get good sintering and flexural strength (≥2 MPa). A typical clay-sawdust based materials (parallepipedic bricks) present porosity ≥40 vol% and 1.5 g/cm3 density. Characterizations such as FTIR, SEM, MIP and flow permeability of ceramic candles were performed. A Hydraulic permeability of ~10 mDarcy was obtained and the mean pore diameter varies from 0.05 to 0.1 µm, in agreement with the microstructure exhibited by the ceramic candles. In the presence of sawdust, pores with size up to 10 µm were observed, justifying the increase of flowing permeability. The elaborated matrixes are promising candidates for microfiltration.
2017
27-dic-2016
43
5
4496
4507
Design of ceramic filters using Clay/Sawdust composites: Effect of pore network on the hydraulic permeability / Youmoue, Martine; Fongang, R. T. Téné; Sofack, J. C.; Kamseu, Elie; Melo, U. Chinje; Tonle, Ignas K.; Leonelli, Cristina; Rossignol, Sylvie. - In: CERAMICS INTERNATIONAL. - ISSN 0272-8842. - 43:5(2017), pp. 4496-4507. [10.1016/j.ceramint.2016.12.101]
Youmoue, Martine; Fongang, R. T. Téné; Sofack, J. C.; Kamseu, Elie; Melo, U. Chinje; Tonle, Ignas K.; Leonelli, Cristina; Rossignol, Sylvie
File in questo prodotto:
File Dimensione Formato  
CeramIntl_2017.pdf

Accesso riservato

Descrizione: Articolo pubblicato
Tipologia: Versione pubblicata dall'editore
Dimensione 2.69 MB
Formato Adobe PDF
2.69 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1133659
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact