We present spectroscopic measurements looking for the coherent coupling between molecular magnetic centers and microwave photons. The aim is to find the optimal conditions and the best molecular features to achieve the quantum strong coupling regime, for which coherent dynamics of hybrid photon-spin states take place. To this end, we used a high critical temperature YBCO superconducting planar resonator working at 7.7 GHz and at low temperatures to investigate three molecular mononuclear coordination compounds, namely (PPh4)2[Cu(mnt)2] (where mnt2- = maleonitriledithiolate), [ErPc2]-TBA+ (where pc2- is the phtalocyaninato and TBA+ is the tetra-n-butylammonium cation) and Dy(trensal) (where H3trensal = 2,2′,2′′-tris(salicylideneimino)triethylamine). Although the strong coupling regime was not achieved in these preliminary experiments, the results provided several hints on how to design molecular magnetic centers to be integrated into hybrid quantum circuits.
Coupling molecular spin centers to microwave planar resonators: towards integration of molecular qubits in quantum circuits / Bonizzoni, Claudio; Ghirri, Alberto; Bader, K.; Van Slageren, J.; Perfetti, M.; Sorace, L.; Lan, Y.; Fuhr, O.; Ruben, M.; Affronte, Marco. - In: DALTON TRANSACTIONS. - ISSN 1477-9226. - 45:42(2016), pp. 16596-16603. [10.1039/c6dt01953f]
Coupling molecular spin centers to microwave planar resonators: towards integration of molecular qubits in quantum circuits
BONIZZONI, CLAUDIO;GHIRRI, Alberto;AFFRONTE, Marco
2016
Abstract
We present spectroscopic measurements looking for the coherent coupling between molecular magnetic centers and microwave photons. The aim is to find the optimal conditions and the best molecular features to achieve the quantum strong coupling regime, for which coherent dynamics of hybrid photon-spin states take place. To this end, we used a high critical temperature YBCO superconducting planar resonator working at 7.7 GHz and at low temperatures to investigate three molecular mononuclear coordination compounds, namely (PPh4)2[Cu(mnt)2] (where mnt2- = maleonitriledithiolate), [ErPc2]-TBA+ (where pc2- is the phtalocyaninato and TBA+ is the tetra-n-butylammonium cation) and Dy(trensal) (where H3trensal = 2,2′,2′′-tris(salicylideneimino)triethylamine). Although the strong coupling regime was not achieved in these preliminary experiments, the results provided several hints on how to design molecular magnetic centers to be integrated into hybrid quantum circuits.File | Dimensione | Formato | |
---|---|---|---|
Coupling_on_molecular_spins.pdf
Open Access dal 15/11/2017
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris