The problem of coupling multiple spin ensembles through cavity photons is revisited by using (3,5-dichloro-4- pyridyl)bis(2,4,6-trichlorophenyl) methyl (PyBTM) organic radicals and a high-T-c superconducting coplanar resonator. An exceptionally strong coupling is obtained and up to three spin ensembles are simultaneously coupled. The ensembles are made physically distinguishable by chemically varying the g factor and by exploiting the inhomogeneities of the applied magnetic field. The coherent mixing of the spin and field modes is demonstrated by the observed multiple anticrossing, along with the simulations performed within the input-output formalism, and quantified by suitable entropic measures.
Coherently coupling distinct spin ensembles through a high-Tc superconducting resonator / Ghirri, Alberto; Bonizzoni, Claudio; Troiani, Filippo; Buccheri, N.; Beverina, L.; Cassinese, A.; Affronte, Marco. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 93:6(2016), pp. 1-7. [10.1103/PhysRevA.93.063855]
Coherently coupling distinct spin ensembles through a high-Tc superconducting resonator
GHIRRI, Alberto;BONIZZONI, CLAUDIO;TROIANI, Filippo;AFFRONTE, Marco
2016
Abstract
The problem of coupling multiple spin ensembles through cavity photons is revisited by using (3,5-dichloro-4- pyridyl)bis(2,4,6-trichlorophenyl) methyl (PyBTM) organic radicals and a high-T-c superconducting coplanar resonator. An exceptionally strong coupling is obtained and up to three spin ensembles are simultaneously coupled. The ensembles are made physically distinguishable by chemically varying the g factor and by exploiting the inhomogeneities of the applied magnetic field. The coherent mixing of the spin and field modes is demonstrated by the observed multiple anticrossing, along with the simulations performed within the input-output formalism, and quantified by suitable entropic measures.File | Dimensione | Formato | |
---|---|---|---|
manuscript28052016MA.pdf
Open access
Descrizione: articolo principale
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
501.46 kB
Formato
Adobe PDF
|
501.46 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris