In this paper a design method for ferrite assisted synchronous reluctance machine is proposed in order to reduce torque ripple and cogging torque. An asymmetrical layout of the rotor flux barriers is proposed in order to reduce the harmonics components of the pulsating torque. The proposed analytical method is validated, employing finite elements simulations, for pure synchronous reluctance (SyR) and permanent magnet assisted synchronous reluctance machines (PMSyR) considering different slot-pole configurations. Simulated machines present a cogging torque and a torque ripple reduction respectively up to 92% and up to 70%. Moreover the electromotive force waveform is improved too. These results are achieved without reducing nominal torque and without increasing machines production costs.
A design method to reduce pulsating torque in PM assisted synchronous reluctance machines with asymmetry of rotor barriers / Davoli, Matteo; Bianchini, Claudio; Torreggiani, Ambra; Immovilli, Fabio. - (2016), pp. 1566-1571. (Intervento presentato al convegno 42nd Conference of the Industrial Electronics Society, IECON 2016 tenutosi a Palazzo dei Congressi, ita nel 2016) [10.1109/IECON.2016.7793919].
A design method to reduce pulsating torque in PM assisted synchronous reluctance machines with asymmetry of rotor barriers
DAVOLI, MATTEO;BIANCHINI, Claudio;TORREGGIANI, AMBRA;IMMOVILLI, Fabio
2016
Abstract
In this paper a design method for ferrite assisted synchronous reluctance machine is proposed in order to reduce torque ripple and cogging torque. An asymmetrical layout of the rotor flux barriers is proposed in order to reduce the harmonics components of the pulsating torque. The proposed analytical method is validated, employing finite elements simulations, for pure synchronous reluctance (SyR) and permanent magnet assisted synchronous reluctance machines (PMSyR) considering different slot-pole configurations. Simulated machines present a cogging torque and a torque ripple reduction respectively up to 92% and up to 70%. Moreover the electromotive force waveform is improved too. These results are achieved without reducing nominal torque and without increasing machines production costs.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris