In this paper we present a heavily exploration oriented implementation of genetic algorithms to be executed on graphic processor units (GPUs) that is optimized with our novel mechanism for scheduling GPU-side synchronized jobs that takes inspiration from the concept of persistent threads. Persistent Threads allow an efficient distribution of work loads throughout the GPU so to fully exploit the CUDA (NVIDIA's proprietary Compute Unified Device Architecture) architecture. Our approach (named Scheduled Light Kernel, SLK) uses a specifically designed data structure for issuing sequences of commands from the CPU to the GPU able to minimize CPUGPU communications, exploit streams of concurrent execution of different device side functions within different Streaming Multiprocessors and minimize kernels launch overhead. Results obtained on two completely different experimental settings show that our approach is able to dramatically increase the performance of the tested genetic algorithms compared to the baseline implementation that (while still running on a GPU) does not exploit our proposed approach. Our proposed SLK approach does not require substantial code rewriting and is also compared to newly introduced features in the last CUDA development toolkit, such as nested kernel invocations for dynamic parallelism.
Efficient Implementation of Genetic Algorithms on GP-GPU with Scheduled Persistent CUDA Threads / Capodieci, Nicola; Burgio, Paolo. - (2015), pp. 6-12. ((Intervento presentato al convegno Seventh International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), 2015 tenutosi a Nanjing (China) nel 12-14 Dicembre 2015.
Data di pubblicazione: | 2015 |
Data di prima pubblicazione: | 2015 |
Titolo: | Efficient Implementation of Genetic Algorithms on GP-GPU with Scheduled Persistent CUDA Threads |
Autore/i: | Capodieci, Nicola; Burgio, Paolo |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1109/PAAP.2015.13 |
Codice identificativo Scopus: | 2-s2.0-84962290520 |
Codice identificativo ISI: | WOS:000380466400002 |
Nome del convegno: | Seventh International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), 2015 |
Luogo del convegno: | Nanjing (China) |
Data del convegno: | 12-14 Dicembre 2015 |
Pagina iniziale: | 6 |
Pagina finale: | 12 |
Citazione: | Efficient Implementation of Genetic Algorithms on GP-GPU with Scheduled Persistent CUDA Threads / Capodieci, Nicola; Burgio, Paolo. - (2015), pp. 6-12. ((Intervento presentato al convegno Seventh International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), 2015 tenutosi a Nanjing (China) nel 12-14 Dicembre 2015. |
Tipologia | Relazione in Atti di Convegno |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
File.pdf | Articolo da IEEExplore | Versione dell'editore (versione pubblicata) | Administrator Richiedi una copia |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris