By means of variational methods we prove the existence of a positive, homoclinic solution to an equation of the kind u''=au-bu^p, where p>1, and both coefficients a(x), b(x) are positive and asymptotically constant. Our main result requires a control from above on the ratios .between the supremum of a(x) and its limit at infinity and between the limit at infinity of b(x) and its infimum.

Positive homoclinic solutions to some Schrodinger type equations / Gavioli, Andrea; Sanchez, Luis. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - 7-8:(2016), pp. 665-682.

Positive homoclinic solutions to some Schrodinger type equations

GAVIOLI, Andrea;
2016

Abstract

By means of variational methods we prove the existence of a positive, homoclinic solution to an equation of the kind u''=au-bu^p, where p>1, and both coefficients a(x), b(x) are positive and asymptotically constant. Our main result requires a control from above on the ratios .between the supremum of a(x) and its limit at infinity and between the limit at infinity of b(x) and its infimum.
7-8
665
682
Positive homoclinic solutions to some Schrodinger type equations / Gavioli, Andrea; Sanchez, Luis. - In: DIFFERENTIAL AND INTEGRAL EQUATIONS. - ISSN 0893-4983. - 7-8:(2016), pp. 665-682.
Gavioli, Andrea; Sanchez, Luis
File in questo prodotto:
File Dimensione Formato  
gshombis.pdf

non disponibili

Descrizione: articolo principale
Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 284.83 kB
Formato Adobe PDF
284.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1123896
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact