We consider a continuous time linear multi-inventory system with unknown demands bounded within ellipsoids and controls bounded within ellipsoids or polytopes. We address the problem of -stabilising the inventory since this implies some reduction of the inventory costs. The main results are certain conditions under which -stabilisability is possible through a saturated linear state feedback control. All the results are based on a linear matrix inequalities approach and on some recent techniques for the modelling and analysis of polytopic systems with saturations. Numerical simulations are provided.

Robust control of uncertain multi-inventory systems via linear matrix inequality / Bauso, D; Giarrè, Laura; Pesenti, R.. - In: INTERNATIONAL JOURNAL OF CONTROL. - ISSN 0020-7179. - 83:8(2010), pp. 1727-1740. [10.1080/00207179.2010.491131]

Robust control of uncertain multi-inventory systems via linear matrix inequality

GIARRÈ, Laura;
2010

Abstract

We consider a continuous time linear multi-inventory system with unknown demands bounded within ellipsoids and controls bounded within ellipsoids or polytopes. We address the problem of -stabilising the inventory since this implies some reduction of the inventory costs. The main results are certain conditions under which -stabilisability is possible through a saturated linear state feedback control. All the results are based on a linear matrix inequalities approach and on some recent techniques for the modelling and analysis of polytopic systems with saturations. Numerical simulations are provided.
2010
83
8
1727
1740
Robust control of uncertain multi-inventory systems via linear matrix inequality / Bauso, D; Giarrè, Laura; Pesenti, R.. - In: INTERNATIONAL JOURNAL OF CONTROL. - ISSN 0020-7179. - 83:8(2010), pp. 1727-1740. [10.1080/00207179.2010.491131]
Bauso, D; Giarrè, Laura; Pesenti, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1123517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact