The paper deals with a nonlocal diffusion equation which is a model for biological invasion and disease spread. A nonsmooth feedback control term is included and the existence of controlled dynamics is proved, satisfying different kinds of nonlocal condition. Jump discontinuities appear in the process. The existence of optimal control strategies is also shown, under suitably regular control functionals. The investigation makes use of techniques of multivalued analysis and is based on the degree theory for condensing operators in Hilbert spaces.
Nonsmooth feedback controls of nonlocal dispersal models / Malaguti, Luisa; Rubbioni, Paola. - In: NONLINEARITY. - ISSN 0951-7715. - 29:3(2016), pp. 823-850. [10.1088/0951-7715/29/3/823]
Nonsmooth feedback controls of nonlocal dispersal models
MALAGUTI, Luisa
;
2016
Abstract
The paper deals with a nonlocal diffusion equation which is a model for biological invasion and disease spread. A nonsmooth feedback control term is included and the existence of controlled dynamics is proved, satisfying different kinds of nonlocal condition. Jump discontinuities appear in the process. The existence of optimal control strategies is also shown, under suitably regular control functionals. The investigation makes use of techniques of multivalued analysis and is based on the degree theory for condensing operators in Hilbert spaces.File | Dimensione | Formato | |
---|---|---|---|
Malaguti Rubbioni NON-100891 revised.pdf
Accesso riservato
Descrizione: Articolo principale. Versione post-referaggio
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
195.77 kB
Formato
Adobe PDF
|
195.77 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Malaguti Rubbioni 2016.pdf
Accesso riservato
Descrizione: reprint
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris