This paper deals with a nonhomogeneous scalar parabolic equation with possibly degenerate diffusion term; the process has only one stationary state. The equation can be interpreted as modeling collective movements (crowd dynamics, for instance). We show the existence of semi-wavefront solutions for every wave speed; their properties are investigated. Proofs exploit comparison-type techniques and are carried out in the case of one spatial variable; the extension to the general case is straightforward.

Semi-wavefront solutions in models of collective movements with density-dependent diffusivity / Corli, Andrea; Malaguti, Luisa. - In: DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1548-159X. - STAMPA. - 13:4(2016), pp. 297-331. [10.4310/DPDE.2016.v13.n4.a2]

Semi-wavefront solutions in models of collective movements with density-dependent diffusivity

MALAGUTI, Luisa
2016

Abstract

This paper deals with a nonhomogeneous scalar parabolic equation with possibly degenerate diffusion term; the process has only one stationary state. The equation can be interpreted as modeling collective movements (crowd dynamics, for instance). We show the existence of semi-wavefront solutions for every wave speed; their properties are investigated. Proofs exploit comparison-type techniques and are carried out in the case of one spatial variable; the extension to the general case is straightforward.
2016
13
4
297
331
Semi-wavefront solutions in models of collective movements with density-dependent diffusivity / Corli, Andrea; Malaguti, Luisa. - In: DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 1548-159X. - STAMPA. - 13:4(2016), pp. 297-331. [10.4310/DPDE.2016.v13.n4.a2]
Corli, Andrea; Malaguti, Luisa
File in questo prodotto:
File Dimensione Formato  
Corli Malaguti 2016.pdf

Accesso riservato

Descrizione: Articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 366.59 kB
Formato Adobe PDF
366.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1123476
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 12
social impact