Typical applications in signal and image processing often require the numerical solution of large–scale linear least squares problems with simple constraints, related to an m x n nonnegative matrix A, m << n. When the size of A is such that the matrix is not available in memory and only the operators of the matrix-vector products involving A and AT can be computed, forward–backward methods combined with suitable accelerating techniques are very effective; in particular, the gradient projection methods can be improved by suitable step–length rules or by an extrapolation/inertial step. In this work, we propose a further acceleration technique for both schemes, based on the use of variable metrics tailored for the considered problems. The numerical effectiveness of the proposed approach is evaluated on randomly generated test problems and real data arising from a problem of fibre orientation estimation in diffusion MRI.

Scaled first-order methods for a class of large-scale constrained least square problems / Coli, VANNA LISA; Valeria, Ruggiero; Zanni, Luca. - ELETTRONICO. - 1776:(2016), pp. 040002-040002. (Intervento presentato al convegno 2nd International Conference on Numerical Computations: Theory and Algorithms, NUMTA 2016 tenutosi a Pizzo Calabro nel 19-25 giugno 2016) [10.1063/1.4965314].

Scaled first-order methods for a class of large-scale constrained least square problems

COLI, VANNA LISA;ZANNI, Luca
2016

Abstract

Typical applications in signal and image processing often require the numerical solution of large–scale linear least squares problems with simple constraints, related to an m x n nonnegative matrix A, m << n. When the size of A is such that the matrix is not available in memory and only the operators of the matrix-vector products involving A and AT can be computed, forward–backward methods combined with suitable accelerating techniques are very effective; in particular, the gradient projection methods can be improved by suitable step–length rules or by an extrapolation/inertial step. In this work, we propose a further acceleration technique for both schemes, based on the use of variable metrics tailored for the considered problems. The numerical effectiveness of the proposed approach is evaluated on randomly generated test problems and real data arising from a problem of fibre orientation estimation in diffusion MRI.
2016
2nd International Conference on Numerical Computations: Theory and Algorithms, NUMTA 2016
Pizzo Calabro
19-25 giugno 2016
1776
040002
040002
Coli, VANNA LISA; Valeria, Ruggiero; Zanni, Luca
Scaled first-order methods for a class of large-scale constrained least square problems / Coli, VANNA LISA; Valeria, Ruggiero; Zanni, Luca. - ELETTRONICO. - 1776:(2016), pp. 040002-040002. (Intervento presentato al convegno 2nd International Conference on Numerical Computations: Theory and Algorithms, NUMTA 2016 tenutosi a Pizzo Calabro nel 19-25 giugno 2016) [10.1063/1.4965314].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1122948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact