Argumentation mining aims at automatically extracting structured arguments from unstructured textual documents. It has recently become a hot topic also due to its potential in processing information originating from the Web, and in particular from social media, in innovative ways. Recent advances in machine learning methods promise to enable breakthrough applications to social and economic sciences, policy making, and information technology: something that only a few years ago was unthinkable. In this survey article, we introduce argumentation models and methods, review existing systems and applications, and discuss challenges and perspectives of this exciting new research area.

Argumentation mining: State of the art and emerging trends / Lippi, Marco; Torroni, Paolo. - In: ACM TRANSACTIONS ON INTERNET TECHNOLOGY. - ISSN 1533-5399. - 16:2(2016), pp. 1-25. [10.1145/2850417]

Argumentation mining: State of the art and emerging trends

LIPPI, MARCO;
2016

Abstract

Argumentation mining aims at automatically extracting structured arguments from unstructured textual documents. It has recently become a hot topic also due to its potential in processing information originating from the Web, and in particular from social media, in innovative ways. Recent advances in machine learning methods promise to enable breakthrough applications to social and economic sciences, policy making, and information technology: something that only a few years ago was unthinkable. In this survey article, we introduce argumentation models and methods, review existing systems and applications, and discuss challenges and perspectives of this exciting new research area.
2016
16
2
1
25
Argumentation mining: State of the art and emerging trends / Lippi, Marco; Torroni, Paolo. - In: ACM TRANSACTIONS ON INTERNET TECHNOLOGY. - ISSN 1533-5399. - 16:2(2016), pp. 1-25. [10.1145/2850417]
Lippi, Marco; Torroni, Paolo
File in questo prodotto:
File Dimensione Formato  
POST_PRINT_Argumentation_Mining_TOIT_15.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri
2850417.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 514.22 kB
Formato Adobe PDF
514.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1122691
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 304
  • ???jsp.display-item.citation.isi??? 193
social impact