In a previous work, Villani et al. introduced a method to identify candidate emergent dynamical structures in complex systems. Such a method detects subsets (clusters) of the system elements which behave in a coherent and coordinated way while loosely interacting with the remainder of the system. Such clusters are assessed in terms of an index that can be associated to each subset, called Dynamical Cluster Index (DCI). When large systems are analyzed, the “curse of dimensionality” makes it impossible to compute the DCI for every possible cluster, even using massively parallel hardware such as GPUs. In this paper, we propose an efficient metaheuristic for searching relevant dynamical structures, which hybridizes an evolutionary algorithm with local search and obtains results comparable to an exhaustive search in a much shorter time. The effectiveness of the method we propose has been evaluated on a set of Boolean models of real-world systems.

Efficient search of relevant structures in complex systems / Sani, Laura; Amoretti, Michele; Vicari, Emilio; Mordonini, Monica; Pecori, Riccardo; Roli, Andrea; Villani, Marco; Cagnoni, Stefano; Serra, Roberto. - STAMPA. - 10037:(2016), pp. 35-48. (Intervento presentato al convegno 15th International Conference of the Italian Association for Artificial Intelligence (AIIA) tenutosi a Genova, ITALY nel NOV 29-DEC 01, 2016) [10.1007/978-3-319-49130-1_4].

Efficient search of relevant structures in complex systems

VILLANI, Marco;SERRA, Roberto
2016

Abstract

In a previous work, Villani et al. introduced a method to identify candidate emergent dynamical structures in complex systems. Such a method detects subsets (clusters) of the system elements which behave in a coherent and coordinated way while loosely interacting with the remainder of the system. Such clusters are assessed in terms of an index that can be associated to each subset, called Dynamical Cluster Index (DCI). When large systems are analyzed, the “curse of dimensionality” makes it impossible to compute the DCI for every possible cluster, even using massively parallel hardware such as GPUs. In this paper, we propose an efficient metaheuristic for searching relevant dynamical structures, which hybridizes an evolutionary algorithm with local search and obtains results comparable to an exhaustive search in a much shorter time. The effectiveness of the method we propose has been evaluated on a set of Boolean models of real-world systems.
2016
15th International Conference of the Italian Association for Artificial Intelligence (AIIA)
Genova, ITALY
NOV 29-DEC 01, 2016
10037
35
48
Sani, Laura; Amoretti, Michele; Vicari, Emilio; Mordonini, Monica; Pecori, Riccardo; Roli, Andrea; Villani, Marco; Cagnoni, Stefano; Serra, Roberto...espandi
Efficient search of relevant structures in complex systems / Sani, Laura; Amoretti, Michele; Vicari, Emilio; Mordonini, Monica; Pecori, Riccardo; Roli, Andrea; Villani, Marco; Cagnoni, Stefano; Serra, Roberto. - STAMPA. - 10037:(2016), pp. 35-48. (Intervento presentato al convegno 15th International Conference of the Italian Association for Artificial Intelligence (AIIA) tenutosi a Genova, ITALY nel NOV 29-DEC 01, 2016) [10.1007/978-3-319-49130-1_4].
File in questo prodotto:
File Dimensione Formato  
paperAIxIA2016.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 271.24 kB
Formato Adobe PDF
271.24 kB Adobe PDF Visualizza/Apri
VQR_Chapter_EfficientSearchOfRelevantStruc.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 261.9 kB
Formato Adobe PDF
261.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1122449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 17
social impact