In the building sector today, enamelled steel products are largely used because of their longevity and aesthetic qualities. In recent years, the considerable improvement in the chemical frit composition for enamelling has led to the development of TiO2 nanoparticle functionalized coatings. Thanks to the photo-catalytic and super-hydrophilic properties of TiO2, it is possible to obtain both self-cleaning and self-sterilizing surfaces. The benefits of these nanoparticles were substantiated, but their risk to the environment and human health is still being assessed. This study analyses the environmental performance of enamelled steel panels that are nano-TiO2 functionalized, using a life cycle assessment methodology. It applies the previously defined (but still preliminary) human toxicity indicators for TiO2 nanoparticles to the life cycle impact assessment (LCIA) stage, representing an early attempt to evaluate the human health risks caused by these new materials through LCA study.
Life Cycle Assessment of a Nano-TiO2 Functionalized Enamel Applied on a Steel Panel / Pini, Martina; Neri, Paolo; Gamberini, Rita; Rimini, Bianca; Marinelli, Simona; Ferrari, Anna Maria. - In: INTERNATIONAL JOURNAL OF OPERATIONS AND QUANTITATIVE MANAGEMENT. - ISSN 1082-1910. - 23:1(2017), pp. 101-120.
Life Cycle Assessment of a Nano-TiO2 Functionalized Enamel Applied on a Steel Panel
PINI, MARTINA;GAMBERINI, Rita;RIMINI, Bianca;Marinelli, Simona;FERRARI, Anna Maria
2017
Abstract
In the building sector today, enamelled steel products are largely used because of their longevity and aesthetic qualities. In recent years, the considerable improvement in the chemical frit composition for enamelling has led to the development of TiO2 nanoparticle functionalized coatings. Thanks to the photo-catalytic and super-hydrophilic properties of TiO2, it is possible to obtain both self-cleaning and self-sterilizing surfaces. The benefits of these nanoparticles were substantiated, but their risk to the environment and human health is still being assessed. This study analyses the environmental performance of enamelled steel panels that are nano-TiO2 functionalized, using a life cycle assessment methodology. It applies the previously defined (but still preliminary) human toxicity indicators for TiO2 nanoparticles to the life cycle impact assessment (LCIA) stage, representing an early attempt to evaluate the human health risks caused by these new materials through LCA study.File | Dimensione | Formato | |
---|---|---|---|
MS1612_proofs final.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris