A significant interest exists in measuring the thermal emissivity of building surfaces since high values combined with high solar reflectance allow rejecting solar energy absorbed by irradiated surfaces, whereas intermediate or low values permit to limit condensation of humidity, heat loss to the sky, or heat transfer through airspaces. The most used measurement method is probably that described by the ASTM C1371 Standard, which correlates the thermal emissivity to the radiative heat flux exchanged in the infrared between the sample surface, kept at ambient temperature, and the bottom surface of a hot emissometer head. With samples showing a low thermal conductivity, the 'slide method' modification is generally used: the hot head is allowed to slide above the sample in order to prevent this from warming up. The slide movement, however, is carried out by hand and time is needed to achieve a stabilized output, therefore the measurement may be time-consuming and also affected by the operator. In order to solve both problems, an automated approach is proposed here, in which the head is moved by the arm of a robot. This manages either the slide movement or the calibration with reference samples, interacting with a computerized data acquisition system that monitors the emissometer output.
Robotic implementation of the slide method for measurement of the thermal emissivity of building elements / Pini, Fabio; Ferrari, Chiara; Libbra, Antonio; Leali, Francesco; Muscio, Alberto. - In: ENERGY AND BUILDINGS. - ISSN 0378-7788. - 114:(2016), pp. 241-246. [10.1016/j.enbuild.2015.07.034]
Robotic implementation of the slide method for measurement of the thermal emissivity of building elements
PINI, Fabio;FERRARI, CHIARA;LIBBRA, Antonio;LEALI, Francesco;MUSCIO, Alberto
2016
Abstract
A significant interest exists in measuring the thermal emissivity of building surfaces since high values combined with high solar reflectance allow rejecting solar energy absorbed by irradiated surfaces, whereas intermediate or low values permit to limit condensation of humidity, heat loss to the sky, or heat transfer through airspaces. The most used measurement method is probably that described by the ASTM C1371 Standard, which correlates the thermal emissivity to the radiative heat flux exchanged in the infrared between the sample surface, kept at ambient temperature, and the bottom surface of a hot emissometer head. With samples showing a low thermal conductivity, the 'slide method' modification is generally used: the hot head is allowed to slide above the sample in order to prevent this from warming up. The slide movement, however, is carried out by hand and time is needed to achieve a stabilized output, therefore the measurement may be time-consuming and also affected by the operator. In order to solve both problems, an automated approach is proposed here, in which the head is moved by the arm of a robot. This manages either the slide movement or the calibration with reference samples, interacting with a computerized data acquisition system that monitors the emissometer output.File | Dimensione | Formato | |
---|---|---|---|
2016_RoboticImplementationOfTheSlideMethodForMeasurementOfTheThermalEmissivityOfBuildingElements.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
RobotizedSlideMethod.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
690.25 kB
Formato
Adobe PDF
|
690.25 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris