We study the critical behavior for inhomogeneous versions of the Curie-Weiss model, where the coupling constant Jij(β) for the edge ij on the complete graph is given by Jij(β) = βwiwj/ (∑ k∈[N]wk). We call the product form of these couplings the rank-1 inhomogeneous Curie-Weiss model. This model also arises [with inverse temperature β replaced by sinh (β) ] from the annealed Ising model on the generalized random graph. We assume that the vertex weights (wi)i∈[N] are regular, in the sense that their empirical distribution converges and the second moment converges as well. We identify the critical temperatures and exponents for these models, as well as a non-classical limit theorem for the total spin at the critical point. These depend sensitively on the number of finite moments of the weight distribution. When the fourth moment of the weight distribution converges, then the critical behavior is the same as on the (homogeneous) Curie-Weiss model, so that the inhomogeneity is weak. When the fourth moment of the weights converges to infinity, and the weights satisfy an asymptotic power law with exponent τ with τ∈ (3 , 5) , then the critical exponents depend sensitively on τ. In addition, at criticality, the total spin SN satisfies that SN/ N(τ-2)/(τ-1) converges in law to some limiting random variable whose distribution we explicitly characterize.

Ising Critical Behavior of Inhomogeneous Curie-Weiss Models and Annealed Random Graphs / Dommers, Sander; Giardina', Cristian; Giberti, Claudio; van der Hofstad, Remco; Prioriello, Maria Luisa. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 348:1(2016), pp. 221-263. [10.1007/s00220-016-2752-2]

Ising Critical Behavior of Inhomogeneous Curie-Weiss Models and Annealed Random Graphs

GIARDINA', Cristian;GIBERTI, Claudio;
2016

Abstract

We study the critical behavior for inhomogeneous versions of the Curie-Weiss model, where the coupling constant Jij(β) for the edge ij on the complete graph is given by Jij(β) = βwiwj/ (∑ k∈[N]wk). We call the product form of these couplings the rank-1 inhomogeneous Curie-Weiss model. This model also arises [with inverse temperature β replaced by sinh (β) ] from the annealed Ising model on the generalized random graph. We assume that the vertex weights (wi)i∈[N] are regular, in the sense that their empirical distribution converges and the second moment converges as well. We identify the critical temperatures and exponents for these models, as well as a non-classical limit theorem for the total spin at the critical point. These depend sensitively on the number of finite moments of the weight distribution. When the fourth moment of the weight distribution converges, then the critical behavior is the same as on the (homogeneous) Curie-Weiss model, so that the inhomogeneity is weak. When the fourth moment of the weights converges to infinity, and the weights satisfy an asymptotic power law with exponent τ with τ∈ (3 , 5) , then the critical exponents depend sensitively on τ. In addition, at criticality, the total spin SN satisfies that SN/ N(τ-2)/(τ-1) converges in law to some limiting random variable whose distribution we explicitly characterize.
2016
348
1
221
263
Ising Critical Behavior of Inhomogeneous Curie-Weiss Models and Annealed Random Graphs / Dommers, Sander; Giardina', Cristian; Giberti, Claudio; van der Hofstad, Remco; Prioriello, Maria Luisa. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 348:1(2016), pp. 221-263. [10.1007/s00220-016-2752-2]
Dommers, Sander; Giardina', Cristian; Giberti, Claudio; van der Hofstad, Remco; Prioriello, Maria Luisa
File in questo prodotto:
File Dimensione Formato  
NonClassicalCLT-revised.pdf

Open access

Descrizione: Articolo
Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 706.05 kB
Formato Adobe PDF
706.05 kB Adobe PDF Visualizza/Apri
VOR_Ising Critical Behavior of Inhomogeneous.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 819.15 kB
Formato Adobe PDF
819.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1118317
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact