Mesenchymal stromal/stem cells (MSCs) reveal progenitor cells-like features including proliferation and differentiation capacities. One of the most historically recognized sources of MSC has been the bone marrow, while other sources recently include adipose tissue, teeth, bone, muscle, placenta, liver, pancreas, umbilical cord, and cord blood. Frequently, progenitor isolation requires traumatic procedures that are poorly feasible and associated with patient discomfort. In the attempt to identify a more approachable MSC source, we focused on endometrial decidual tissue (EDT) found within menstrual blood. Based also on recent literature findings, we hypothesized that EDT may contain heterogeneous populations including some having MSC-like features. Thus, we here sought to isolate EDT-MSC processing menstrual samples from multiple donors. Cytofluorimetric analyses revealed that resulting adherent cells were expressing mesenchymal surface markers, including CD56, CD73, CD90, CD105 and CD146, and pluripotency markers such as SSEA-4. Moreover, EDT-MSC showed a robust clonogenic potential and could be largely expanded in vitro as fibroblastoid elements. In addition, differentiation assays drove these cells towards osteogenic, adipogenic, and chondrogenic lineages. Finally, for the first time, we were able to gene modify these progenitors by a retroviral vector carrying the green fluorescent protein. From these data, we suggest that EDT-MSC could represent a new promising tool having potential within cell and gene therapy applications.

Mesenchymal stromal/stem cells (MSCs) reveal progenitor cells-like features including proliferation and differentiation capacities. One of the most historically recognized sources of MSC has been the bone marrow, while other sources recently include adipose tissue, teeth, bone, muscle, placenta, liver, pancreas, umbilical cord, and cord blood. Frequently, progenitor isolation requires traumatic procedures that are poorly feasible and associated with patient discomfort. In the attempt to identify a more approachable MSC source, we focused on endometrial decidual tissue (EDT) found within menstrual blood. Based also on recent literature findings, we hypothesized that EDT may contain heterogeneous populations including some having MSC-like features. Thus, we here sought to isolate EDT-MSC processing menstrual samples from multiple donors. Cytofluorimetric analyses revealed that resulting adherent cells were expressing mesenchymal surface markers, including CD56, CD73, CD90, CD105 and CD146, and pluripotency markers such as SSEA-4. Moreover, EDT-MSC showed a robust clonogenic potential and could be largely expanded in vitro as fibroblastoid elements. In addition, differentiation assays drove these cells towards osteogenic, adipogenic, and chondrogenic lineages. Finally, for the first time, we were able to gene modify these progenitors by a retroviral vector carrying the green fluorescent protein. From these data, we suggest that EDT-MSC could represent a new promising tool having potential within cell and gene therapy applications. © 2013 Filippo Rossignoli et al.

Isolation, characterization, and transduction of endometrial decidual tissue multipotent mesenchymal stromal/stem cells from menstrual blood / Rossignoli, Filippo; Caselli, Anna; Grisendi, Giulia; Piccinno, MARIA SERENA; Burns, Jorge Phillip Joaquin Sans; Murgia, Alba; Veronesi, Elena; Loschi, Pietro; Masini, Cristina; Conte, Pierfranco; Paolucci, Paolo; Horwiz, Edwin M.; Dominici, Massimo. - In: BIOMED RESEARCH INTERNATIONAL. - ISSN 2314-6133. - ELETTRONICO. - 2013:(2013), pp. 1-14. [10.1155/2013/901821]

Isolation, characterization, and transduction of endometrial decidual tissue multipotent mesenchymal stromal/stem cells from menstrual blood

ROSSIGNOLI, FILIPPO;CASELLI, Anna;GRISENDI, Giulia;PICCINNO, MARIA SERENA;BURNS, Jorge Phillip Joaquin Sans;MURGIA, ALBA;VERONESI, Elena;LOSCHI, Pietro;MASINI, Cristina;CONTE, Pierfranco;PAOLUCCI, Paolo;DOMINICI, Massimo
2013

Abstract

Mesenchymal stromal/stem cells (MSCs) reveal progenitor cells-like features including proliferation and differentiation capacities. One of the most historically recognized sources of MSC has been the bone marrow, while other sources recently include adipose tissue, teeth, bone, muscle, placenta, liver, pancreas, umbilical cord, and cord blood. Frequently, progenitor isolation requires traumatic procedures that are poorly feasible and associated with patient discomfort. In the attempt to identify a more approachable MSC source, we focused on endometrial decidual tissue (EDT) found within menstrual blood. Based also on recent literature findings, we hypothesized that EDT may contain heterogeneous populations including some having MSC-like features. Thus, we here sought to isolate EDT-MSC processing menstrual samples from multiple donors. Cytofluorimetric analyses revealed that resulting adherent cells were expressing mesenchymal surface markers, including CD56, CD73, CD90, CD105 and CD146, and pluripotency markers such as SSEA-4. Moreover, EDT-MSC showed a robust clonogenic potential and could be largely expanded in vitro as fibroblastoid elements. In addition, differentiation assays drove these cells towards osteogenic, adipogenic, and chondrogenic lineages. Finally, for the first time, we were able to gene modify these progenitors by a retroviral vector carrying the green fluorescent protein. From these data, we suggest that EDT-MSC could represent a new promising tool having potential within cell and gene therapy applications.
2013
1
14
Isolation, characterization, and transduction of endometrial decidual tissue multipotent mesenchymal stromal/stem cells from menstrual blood / Rossignoli, Filippo; Caselli, Anna; Grisendi, Giulia; Piccinno, MARIA SERENA; Burns, Jorge Phillip Joaquin Sans; Murgia, Alba; Veronesi, Elena; Loschi, Pietro; Masini, Cristina; Conte, Pierfranco; Paolucci, Paolo; Horwiz, Edwin M.; Dominici, Massimo. - In: BIOMED RESEARCH INTERNATIONAL. - ISSN 2314-6133. - ELETTRONICO. - 2013:(2013), pp. 1-14. [10.1155/2013/901821]
Rossignoli, Filippo; Caselli, Anna; Grisendi, Giulia; Piccinno, MARIA SERENA; Burns, Jorge Phillip Joaquin Sans; Murgia, Alba; Veronesi, Elena; Loschi, Pietro; Masini, Cristina; Conte, Pierfranco; Paolucci, Paolo; Horwiz, Edwin M.; Dominici, Massimo
File in questo prodotto:
File Dimensione Formato  
Rossignoli et al. EDT-MSC Biomed Res Int 2013.pdf

accesso aperto

Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 4.02 MB
Formato Adobe PDF
4.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1117874
Citazioni
  • ???jsp.display-item.citation.pmc??? 31
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 60
social impact