We consider a thermodynamically consistent diffuse interface model describing two-phase flows of incompressible fluids in a non-isothermal setting. The model was recently introduced in [11] where existence of weak solutions was proved in three space dimensions. Here, we aim to study the properties of solutions in the two-dimensional case. In particular, we can show existence of global in time solutions satisfying a stronger formulation of the model with respect to the one considered in [11].

Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids / Eleuteri, Michela; Rocca, Elisabetta; Schimperna, Giulio. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 33:6(2016), pp. 1431-1454. [10.1016/j.anihpc.2015.05.006]

Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids

ELEUTERI, Michela;
2016

Abstract

We consider a thermodynamically consistent diffuse interface model describing two-phase flows of incompressible fluids in a non-isothermal setting. The model was recently introduced in [11] where existence of weak solutions was proved in three space dimensions. Here, we aim to study the properties of solutions in the two-dimensional case. In particular, we can show existence of global in time solutions satisfying a stronger formulation of the model with respect to the one considered in [11].
2016
33
6
1431
1454
Existence of solutions to a two-dimensional model for nonisothermal two-phase flows of incompressible fluids / Eleuteri, Michela; Rocca, Elisabetta; Schimperna, Giulio. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 33:6(2016), pp. 1431-1454. [10.1016/j.anihpc.2015.05.006]
Eleuteri, Michela; Rocca, Elisabetta; Schimperna, Giulio
File in questo prodotto:
File Dimensione Formato  
VOR_Existence of solutions to a two-dimensional.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 583.22 kB
Formato Adobe PDF
583.22 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1117571
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact