With the spread of wearable and mobile devices, the request for interactive augmented reality applications is in constant growth. Among the different possibilities, we focus on the cultural heritage domain where a key step in the development applications for augmented cultural experiences is to obtain a precise localization of the user, i.e. the 6 degree-of-freedom of the camera acquiring the images used by the application. Current state of the art perform this task by extracting local descriptors from a query and exhaustively matching them to a sparse 3D model of the environment. While this procedure obtains good localization performance, due to the vast search space involved in the retrieval of 2D-3D correspondences this is often not feasible in real-time and interactive environments. In this paper we hence propose to perform descriptor quantization to reduce the search space and employ multiple KD-Trees combined with a principal component analysis dimensionality reduction to enable an efficient search. We experimentally show that our solution can halve the computational requirements of the correspondence search with regard to the state of the art while maintaining similar accuracy levels.

Optimizing image registration for interactive applications / Gasparini, Riccardo; Alletto, Stefano; Serra, Giuseppe; Cucchiara, Rita. - 9768:(2016), pp. 479-488. (Intervento presentato al convegno 3rd International Conference on Augmented Reality, Virtual Reality, and Computer Graphics, AVR 2016 tenutosi a ita nel 2016) [10.1007/978-3-319-40621-3_36].

Optimizing image registration for interactive applications

GASPARINI, RICCARDO;ALLETTO, STEFANO;SERRA, GIUSEPPE;CUCCHIARA, Rita
2016

Abstract

With the spread of wearable and mobile devices, the request for interactive augmented reality applications is in constant growth. Among the different possibilities, we focus on the cultural heritage domain where a key step in the development applications for augmented cultural experiences is to obtain a precise localization of the user, i.e. the 6 degree-of-freedom of the camera acquiring the images used by the application. Current state of the art perform this task by extracting local descriptors from a query and exhaustively matching them to a sparse 3D model of the environment. While this procedure obtains good localization performance, due to the vast search space involved in the retrieval of 2D-3D correspondences this is often not feasible in real-time and interactive environments. In this paper we hence propose to perform descriptor quantization to reduce the search space and employ multiple KD-Trees combined with a principal component analysis dimensionality reduction to enable an efficient search. We experimentally show that our solution can halve the computational requirements of the correspondence search with regard to the state of the art while maintaining similar accuracy levels.
2016
3rd International Conference on Augmented Reality, Virtual Reality, and Computer Graphics, AVR 2016
ita
2016
9768
479
488
Gasparini, Riccardo; Alletto, Stefano; Serra, Giuseppe; Cucchiara, Rita
Optimizing image registration for interactive applications / Gasparini, Riccardo; Alletto, Stefano; Serra, Giuseppe; Cucchiara, Rita. - 9768:(2016), pp. 479-488. (Intervento presentato al convegno 3rd International Conference on Augmented Reality, Virtual Reality, and Computer Graphics, AVR 2016 tenutosi a ita nel 2016) [10.1007/978-3-319-40621-3_36].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1116419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact