Scalability in monitoring and management of cloud data centres may be improved through the clustering of virtual machines (VMs) exhibiting similar behaviour. However, available solutions for automatic VM clustering present some important drawbacks that hinder their applicability to real cloud scenarios. For example, existing solutions show a clear trade-off between the accuracy of the VMs clustering and the computational cost of the automatic process; moreover, their performance shows a strong dependence on specific technique parameters. To overcome these issues, we propose a novel approach for VM clustering that uses Mixture of Gaussians (MoGs) together with the Kullback-Leiber divergence to model similarity between VMs. Furthermore, we provide a thorough experimental evaluation of our proposal and of existing techniques to identify the most suitable solution for different workload scenarios.

A comparison of techniques to detect similarities in cloud virtual machines / Canali, Claudia; Lancellotti, Riccardo. - In: INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING. - ISSN 1741-847X. - STAMPA. - 7:2(2016), pp. 152-162. [10.1504/IJGUC.2016.077489]

A comparison of techniques to detect similarities in cloud virtual machines

CANALI, Claudia;LANCELLOTTI, Riccardo
2016

Abstract

Scalability in monitoring and management of cloud data centres may be improved through the clustering of virtual machines (VMs) exhibiting similar behaviour. However, available solutions for automatic VM clustering present some important drawbacks that hinder their applicability to real cloud scenarios. For example, existing solutions show a clear trade-off between the accuracy of the VMs clustering and the computational cost of the automatic process; moreover, their performance shows a strong dependence on specific technique parameters. To overcome these issues, we propose a novel approach for VM clustering that uses Mixture of Gaussians (MoGs) together with the Kullback-Leiber divergence to model similarity between VMs. Furthermore, we provide a thorough experimental evaluation of our proposal and of existing techniques to identify the most suitable solution for different workload scenarios.
2016
7
2
152
162
A comparison of techniques to detect similarities in cloud virtual machines / Canali, Claudia; Lancellotti, Riccardo. - In: INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING. - ISSN 1741-847X. - STAMPA. - 7:2(2016), pp. 152-162. [10.1504/IJGUC.2016.077489]
Canali, Claudia; Lancellotti, Riccardo
File in questo prodotto:
File Dimensione Formato  
IJGUC70208_Canali & Lancellotti.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 844.52 kB
Formato Adobe PDF
844.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1112633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact