In this paper we compute the asymptotic variance-covariance matrix of the method of moments estimators for the canonical Stochastic Volatility model. Our procedure is based on a linearization of the initial process via the log-squared transformation of Breidt and Carriquiry (Modelling and prediction, honoring Seymour Geisel. Springer, Berlin, 1996). Knowledge of the asymptotic variance-covariance matrix of the method of moments estimators offers a concrete possibility for the use of the classical testing procedures. The resulting asymptotic standard errors are then compared with those proposed in the literature applying different parameter estimates. Applications on simulated data support our results. Finally, we present empirical applications on the daily returns of Euro-US dollar and Yen-US dollar exchange rates.
Estimation and asymptotic covariance matrix for stochastic volatility models / Cavicchioli, Maddalena. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1618-2510. - STAMPA. - 26:3(2017), pp. 437-452. [10.1007/s10260-016-0373-8]
Estimation and asymptotic covariance matrix for stochastic volatility models
CAVICCHIOLI, MADDALENA
2017
Abstract
In this paper we compute the asymptotic variance-covariance matrix of the method of moments estimators for the canonical Stochastic Volatility model. Our procedure is based on a linearization of the initial process via the log-squared transformation of Breidt and Carriquiry (Modelling and prediction, honoring Seymour Geisel. Springer, Berlin, 1996). Knowledge of the asymptotic variance-covariance matrix of the method of moments estimators offers a concrete possibility for the use of the classical testing procedures. The resulting asymptotic standard errors are then compared with those proposed in the literature applying different parameter estimates. Applications on simulated data support our results. Finally, we present empirical applications on the daily returns of Euro-US dollar and Yen-US dollar exchange rates.File | Dimensione | Formato | |
---|---|---|---|
publication_SMA.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
923.99 kB
Formato
Adobe PDF
|
923.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris