An existence result for differential inclusions in a separable Hilbert space is furnished. A wide family of nonlocal boundary value problems is treated, including periodic, anti-periodic, mean value and multipoint conditions. The study is based on an approximation solvability method. Advanced topological methods are used as well as a Scorza Dragoni-type result for multivalued maps. The conclusions are original also in the single-valued setting. An application to a nonlocal dispersal model is given.
Nonlocal problems in Hilbert spaces / Benedetti, Irene; Malaguti, Luisa; Taddei, Valentina. - ELETTRONICO. - (2015), pp. 103-111. (Intervento presentato al convegno Dynamical Systems and Differential Equations, AIMS Proceedings 2015 Proceedings of the 10th AIMS International Conference (Madrid, Spain) tenutosi a Madrid nel 7-11 Luglio 2014) [10.3934/proc.2015.0103].
Nonlocal problems in Hilbert spaces
MALAGUTI, Luisa;TADDEI, Valentina
2015
Abstract
An existence result for differential inclusions in a separable Hilbert space is furnished. A wide family of nonlocal boundary value problems is treated, including periodic, anti-periodic, mean value and multipoint conditions. The study is based on an approximation solvability method. Advanced topological methods are used as well as a Scorza Dragoni-type result for multivalued maps. The conclusions are original also in the single-valued setting. An application to a nonlocal dispersal model is given.File | Dimensione | Formato | |
---|---|---|---|
Benedetti-Malaguti-Taddei7.pdf
Open access
Descrizione: articolo
Tipologia:
Versione pubblicata dall'editore
Dimensione
318.42 kB
Formato
Adobe PDF
|
318.42 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris