An existence result for differential inclusions in a separable Hilbert space is furnished. A wide family of nonlocal boundary value problems is treated, including periodic, anti-periodic, mean value and multipoint conditions. The study is based on an approximation solvability method. Advanced topological methods are used as well as a Scorza Dragoni-type result for multivalued maps. The conclusions are original also in the single-valued setting. An application to a nonlocal dispersal model is given.

Nonlocal problems in Hilbert spaces / Benedetti, Irene; Malaguti, Luisa; Taddei, Valentina. - ELETTRONICO. - (2015), pp. 103-111. (Intervento presentato al convegno Dynamical Systems and Differential Equations, AIMS Proceedings 2015 Proceedings of the 10th AIMS International Conference (Madrid, Spain) tenutosi a Madrid nel 7-11 Luglio 2014) [10.3934/proc.2015.0103].

Nonlocal problems in Hilbert spaces

MALAGUTI, Luisa;TADDEI, Valentina
2015

Abstract

An existence result for differential inclusions in a separable Hilbert space is furnished. A wide family of nonlocal boundary value problems is treated, including periodic, anti-periodic, mean value and multipoint conditions. The study is based on an approximation solvability method. Advanced topological methods are used as well as a Scorza Dragoni-type result for multivalued maps. The conclusions are original also in the single-valued setting. An application to a nonlocal dispersal model is given.
2015
Dynamical Systems and Differential Equations, AIMS Proceedings 2015 Proceedings of the 10th AIMS International Conference (Madrid, Spain)
Madrid
7-11 Luglio 2014
103
111
Benedetti, Irene; Malaguti, Luisa; Taddei, Valentina
Nonlocal problems in Hilbert spaces / Benedetti, Irene; Malaguti, Luisa; Taddei, Valentina. - ELETTRONICO. - (2015), pp. 103-111. (Intervento presentato al convegno Dynamical Systems and Differential Equations, AIMS Proceedings 2015 Proceedings of the 10th AIMS International Conference (Madrid, Spain) tenutosi a Madrid nel 7-11 Luglio 2014) [10.3934/proc.2015.0103].
File in questo prodotto:
File Dimensione Formato  
Benedetti-Malaguti-Taddei7.pdf

Open access

Descrizione: articolo
Tipologia: Versione pubblicata dall'editore
Dimensione 318.42 kB
Formato Adobe PDF
318.42 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1111375
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact