We develop a method to validate the use of Markov Switching models in modelling time series subject to structural changes. Particularly, we consider multivariate autoregressive models subject to Markov Switching and derive close-form formulae for the spectral density of such models, based on their autocovariance functions and stable representations. Within this framework, we check the capability of the model to capture the relative importance of high- and low-frequency variability of the series. Applications to U.S. macroeconomic and financial data illustrate the behaviour at different frequencies.

Validating Markov Switching VAR Through Spectral Representations / Billio, Monica; Cavicchioli, Maddalena. - STAMPA. - 622:(2016), pp. 3-15. [10.1007/978-3-319-27284-9_1]

Validating Markov Switching VAR Through Spectral Representations

CAVICCHIOLI, MADDALENA
2016

Abstract

We develop a method to validate the use of Markov Switching models in modelling time series subject to structural changes. Particularly, we consider multivariate autoregressive models subject to Markov Switching and derive close-form formulae for the spectral density of such models, based on their autocovariance functions and stable representations. Within this framework, we check the capability of the model to capture the relative importance of high- and low-frequency variability of the series. Applications to U.S. macroeconomic and financial data illustrate the behaviour at different frequencies.
2016
Causal Inference in Econometrics
Huynh, Van-Nam; Kreinovich, Vladik; Sriboonchitta, Songsak
978-3-319-27284-9
Springer International Publishing Switzerland
SVIZZERA
Validating Markov Switching VAR Through Spectral Representations / Billio, Monica; Cavicchioli, Maddalena. - STAMPA. - 622:(2016), pp. 3-15. [10.1007/978-3-319-27284-9_1]
Billio, Monica; Cavicchioli, Maddalena
File in questo prodotto:
File Dimensione Formato  
393463_1_En_1_Chapter_Author_corrected_proof.pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 485.52 kB
Formato Adobe PDF
485.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1111124
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact